Revisiting PFA-mediated tissue fixation chemistry: FixEL enables trapping of small molecules in the brain to visualize their distribution changes

[1]  M. Maletic-Savatic,et al.  Spatial analysis of drug absorption, distribution, metabolism, and toxicology using Mass Spectrometry Imaging. , 2022, Biochemical pharmacology.

[2]  B. Cravatt,et al.  In situ identification of cellular drug targets in mammalian tissue , 2022, Cell.

[3]  H. Nonaka,et al.  Coordination chemogenetics for activation of GPCR-type glutamate receptors in brain tissue , 2021, Nature Communications.

[4]  Masahiko Watanabe,et al.  mGluR1 signaling in cerebellar Purkinje cells: Subcellular organization and involvement in cerebellar function and disease , 2021, Neuropharmacology.

[5]  M. Yuzaki,et al.  Site-specific covalent labeling of His-tag fused proteins with N-acyl-N-alkyl sulfonamide reagent , 2020, Bioorganic & medicinal chemistry.

[6]  K. Tono,et al.  Structure of the dopamine D2 receptor in complex with the antipsychotic drug spiperone , 2020, Nature Communications.

[7]  Andrew C. Payne,et al.  Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems , 2020, Science.

[8]  Hans-Ulrich Dodt,et al.  Whole-Brain Profiling of Cells and Circuits in Mammals by Tissue Clearing and Light-Sheet Microscopy , 2020, Neuron.

[9]  Kazunari Miyamichi,et al.  Versatile whole-organ/body staining and imaging based on electrolyte-gel properties of biological tissues , 2020, Nature Communications.

[10]  Chihiro Yokoyama,et al.  Versatile whole-organ/body staining and imaging based on electrolyte-gel properties of biological tissues , 2020, Nature Communications.

[11]  Jinyi Bai,et al.  Click-ExM enables expansion microscopy for all biomolecules , 2020, Nature Methods.

[12]  L. Mrzljak,et al.  Elevated Type 1 Metabotropic Glutamate Receptor Availability in a Mouse Model of Huntington’s Disease: a Longitudinal PET Study , 2020, Molecular Neurobiology.

[13]  Dennis Trede,et al.  Three-Dimensional Mass Spectrometry Imaging Identifies Lipid Markers of Medulloblastoma Metastasis , 2019, Scientific Reports.

[14]  Gerald M. Rubin,et al.  Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution , 2019, Science.

[15]  W. Jagust Imaging the evolution and pathophysiology of Alzheimer disease , 2018, Nature Reviews Neuroscience.

[16]  William E. Allen,et al.  Three-dimensional intact-tissue sequencing of single-cell transcriptional states , 2018, Science.

[17]  K. Deisseroth,et al.  Hydrogel-Tissue Chemistry: Principles and Applications. , 2018, Annual review of biophysics.

[18]  Kenji F. Tanaka,et al.  A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing , 2018, Nature Neuroscience.

[19]  Lingjun Li,et al.  Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights. , 2018, Analytical chemistry.

[20]  Nadim Jon Shah,et al.  Advances in neuro-oncology imaging , 2017, Nature Reviews Neurology.

[21]  Chemical labelling for visualizing native AMPA receptors in live neurons , 2017, Nature Communications.

[22]  Michisuke Yuzaki,et al.  A GluD Coming-Of-Age Story , 2017, Trends in Neurosciences.

[23]  Lin Xie,et al.  Dynamic Changes in Striatal mGluR1 But Not mGluR5 during Pathological Progression of Parkinson's Disease in Human Alpha-Synuclein A53T Transgenic Rats: A Multi-PET Imaging Study , 2016, The Journal of Neuroscience.

[24]  Jonathan T. C. Liu,et al.  Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging , 2015, Physics in medicine and biology.

[25]  Edward S. Boyden,et al.  Expansion microscopy , 2015, Science.

[26]  Rajan P Kulkarni,et al.  Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing , 2014, Cell.

[27]  K. Deisseroth,et al.  Advanced CLARITY for rapid and high-resolution imaging of intact tissues , 2014, Nature Protocols.

[28]  E. Susaki,et al.  Whole-Brain Imaging with Single-Cell Resolution Using Chemical Cocktails and Computational Analysis , 2014, Cell.

[29]  R. Stevens,et al.  Structure of a Class C GPCR Metabotropic Glutamate Receptor 1 Bound to an Allosteric Modulator , 2014, Science.

[30]  Takeshi Imai,et al.  SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction , 2013, Nature Neuroscience.

[31]  Serge Muyldermans,et al.  Nanobodies: natural single-domain antibodies. , 2013, Annual review of biochemistry.

[32]  Sarah L. DeVos,et al.  Direct Intraventricular Delivery of Drugs to the Rodent Central Nervous System , 2013, Journal of visualized experiments : JoVE.

[33]  Aaron S. Andalman,et al.  Structural and molecular interrogation of intact biological systems , 2013, Nature.

[34]  J. Maeda,et al.  Development of N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methyl-4-[11C]methylbenzamide for positron emission tomography imaging of metabotropic glutamate 1 receptor in monkey brain. , 2012, Journal of medicinal chemistry.

[35]  Frank Bradke,et al.  Three-dimensional imaging of solvent-cleared organs using 3DISCO , 2012, Nature Protocols.

[36]  Rooban Thavarajah,et al.  Chemical and physical basics of routine formaldehyde fixation , 2012, Journal of oral and maxillofacial pathology : JOMFP.

[37]  Lin Xie,et al.  Synthesis and evaluation of novel radioligands for positron emission tomography imaging of metabotropic glutamate receptor subtype 1 (mGluR1) in rodent brain. , 2012, Journal of medicinal chemistry.

[38]  Atsushi Miyawaki,et al.  Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain , 2011, Nature Neuroscience.

[39]  D. Trauner,et al.  Pharmacology of ionotropic glutamate receptors: A structural perspective. , 2010, Bioorganic & medicinal chemistry.

[40]  Masahiko Watanabe,et al.  The N-Terminal Domain of GluD2 (GluRδ2) Recruits Presynaptic Terminals and Regulates Synaptogenesis in the Cerebellum In Vivo , 2009, The Journal of Neuroscience.

[41]  G. Allan Johnson,et al.  Morphometric analysis of the C57BL/6J mouse brain , 2007, NeuroImage.

[42]  A. Schierloh,et al.  Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain , 2007, Nature Methods.

[43]  B. Roth,et al.  The Multiplicity of Serotonin Receptors: Uselessly Diverse Molecules or an Embarrassment of Riches? , 2000 .

[44]  R. Glennon,et al.  Spiperone: influence of spiro ring substituents on 5-HT2A serotonin receptor binding. , 1998, Journal of medicinal chemistry.

[45]  H. Hofmann,et al.  Pyrrolylquinoxalinediones: A new class of AMPA receptor antagonists , 1996 .

[46]  P. Seeman,et al.  Dopamine receptor pharmacology. , 1994, Trends in pharmacological sciences.

[47]  G. Pearlson,et al.  Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. , 1986, Science.

[48]  P. Roller,et al.  Formaldehyde fixation. , 1985, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[49]  G. L. Houser The Uses of Formaldehyde in Animal Morphology , 2019 .

[50]  D. Baskin Fixation and Tissue Processing in Immunohistochemistry , 2014 .

[51]  Hollis G. Potter,et al.  Author Manuscript , 2013 .