WORST POSSIBLE CONDITION NUMBER OF POLYNOMIAL SYSTEMS

A worst case bound for the condition number of a generic system of polynomial equations with integer coefficients is given. For fixed degree and number of equations, the condition number is (non-uniformly, generically) pseudo-polynomial in the input size.

[1]  Richard E. Ewing,et al.  "The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics" , 1986 .

[2]  Gregorio Malajovich-Mu noz On the Complexity of Path-Following Newton Algorithms for Solving Systems of Polynomial Equations with Integer Coecients. , 1993 .

[3]  Stephen Smale,et al.  Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..

[4]  S. Smale,et al.  Complexity of Bezout’s Theorem II Volumes and Probabilities , 1993 .

[5]  S. Smale Newton’s Method Estimates from Data at One Point , 1986 .

[6]  S. Smale,et al.  Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .

[7]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[8]  F. S. Macaulay Some Formulæ in Elimination , 1902 .

[9]  Gregorio Malajovich,et al.  On Generalized Newton Algorithms: Quadratic Convergence, Path-Following and Error Analysis , 1994, Theor. Comput. Sci..

[10]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[11]  S. Smale,et al.  On the complexity of path-following newton algorithms for solving systems of polynomial equations with integer coefficients , 1993 .

[12]  George Salmon Lessons introductory to the modern higher algebra , 1885 .

[13]  S. Smale,et al.  Complexity of Bezout's theorem IV: probability of success; extensions , 1996 .

[14]  A. B. BASSET,et al.  Modern Algebra , 1905, Nature.

[15]  Stephen Smale,et al.  Complexity of Bezout's Theorem V: Polynomial Time , 1994, Theor. Comput. Sci..