A Variational Approach and Finite Element Implementation for Swelling of Polymeric Hydrogels Under Geometric Constraints

A hydrogel consists of a cross-linked polymer network and solvent molecules. Depending on its chemical and mechanical environment, the polymer network may undergo enormous volume change. The present work develops a general formulation based on a variational approach, which leads to a set of governing equations coupling mechanical and chemical equilibrium conditions along with proper boundary conditions. A specific material model is employed in a finite element implementation, for which the nonlinear constitutive behavior is derived from a free energy function, with explicit formula for the true stress and tangent modulus at the current state of deformation and chemical potential. Such implementation enables numerical simulations of hydrogels swelling under various constraints. Several examples are presented, with both homogeneous and inhomogeneous swelling deformation. In particular, the effect of geometric constraint is emphasized for the inhomogeneous swelling of surface-attached hydrogel lines of rectangular cross sections, which depends on the width-to-height aspect ratio of the line. The present numerical simulations show that, beyond a critical aspect ratio, creaselike surface instability occurs upon swelling.

[1]  J. Willard Gibbs,et al.  The scientific papers of J. Willard Gibbs , 1907 .

[2]  P. Flory Statistical Mechanics of Swelling of Network Structures , 1950 .

[3]  Gabriela Koreisová,et al.  Scientific Papers , 1997, Nature.

[4]  A. Boudaoud,et al.  Buckling of swelling gels , 2005, The European physical journal. E, Soft matter.

[5]  W. Kuhn,et al.  Mechanische und optische Eigenschaften von gequollenem Kautschuk , 1947 .

[6]  Masayuki Tokita,et al.  Phase Transitions of Gels , 1992 .

[7]  S. Minko,et al.  Stimuli-responsive hydrogel thin films , 2009 .

[8]  A. Boudaoud,et al.  Mechanical phase diagram of shrinking cylindrical gels. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  J. Aizenberg,et al.  Reversible Switching of Hydrogel-Actuated Nanostructures into Complex Micropatterns , 2007, Science.

[10]  Tanaka,et al.  Surface-pattern evolution in a swelling gel under a geometrical constraint: Direct observation of fold structure and its coarsening dynamics. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  J. Hermans Deformation and swelling of polymer networks containing comparatively long chains , 1947 .

[12]  Kink instability of a highly deformable elastic cylinder. , 2006, Physical review letters.

[13]  Ray W. Ogden,et al.  Volume changes associated with the deformation of rubber-like solids , 1976 .

[14]  R. Rivlin Large Elastic Deformations of Isotropic Materials , 1997 .

[15]  Toyoichi Tanaka,et al.  Theory and numerical calculation of pattern formation in shrinking gels , 1999 .

[16]  Elasticity in strongly interacting soft solids: A polyelectrolyte network , 1997, cond-mat/9711218.

[17]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[18]  W. Kuhn,et al.  Reversible Dilation and Contraction by Changing the State of Ionization of High-Polymer Acid Networks , 1950, Nature.

[19]  J. Dolbow,et al.  Chemically induced swelling of hydrogels , 2004 .

[20]  A. Ravve,et al.  Principles of Polymer Chemistry , 1995 .

[21]  Leonidas E. Ocola,et al.  Direct-write e-beam patterning of stimuli-responsive hydrogel nanostructures , 2005 .

[22]  Jeffrey E. Bischoff,et al.  A new constitutive model for the compressibility of elastomers at finite deformations , 2001 .

[23]  Zhigang Suo,et al.  Formation of creases on the surfaces of elastomers and gels , 2009 .

[24]  J. C. Simo,et al.  Remarks on rate constitutive equations for finite deformation problems: computational implications , 1984 .

[25]  K. Kawasaki,et al.  Three-dimensional computer modeling for pattern formation on the surface of an expanding polymer gel. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[26]  Hua Li,et al.  Modeling of multiphase smart hydrogels responding to pH and electric voltage coupled stimuli , 2007 .

[27]  B Mattiasson,et al.  'Smart' polymers and what they could do in biotechnology and medicine. , 1999, Trends in biotechnology.

[28]  L. Schmidt‐Mende,et al.  ZnO - nanostructures, defects, and devices , 2007 .

[29]  C. Soles,et al.  Acoustic modes and elastic properties of polymeric nanostructures , 2005 .

[30]  Toyoichi Tanaka,et al.  Patterns in shrinking gels , 1992, Nature.

[31]  Z. Suo,et al.  Stretching and polarizing a dielectric gel immersed in a solvent , 2008 .

[32]  Z. Suo,et al.  Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load , 2009 .

[33]  R. Hayward,et al.  Creasing instability of surface-attached hydrogels. , 2008, Soft matter.

[34]  Robin H. Liu,et al.  Functional hydrogel structures for autonomous flow control inside microfluidic channels , 2000, Nature.

[35]  C. Durning,et al.  Nonlinear swelling of polymer gels , 1993 .

[36]  A. Boudaoud,et al.  The Buckling of a Swollen Thin Gel Layer Bound to a Compliant Substrate , 2007, cond-mat/0701640.

[37]  A. Khademhosseini,et al.  Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology , 2006 .

[38]  R. S. Rivlin,et al.  Large elastic deformations of isotropic materials. I. Fundamental concepts , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[39]  A. K. Agarwal,et al.  Adaptive liquid microlenses activated by stimuli-responsive hydrogels , 2006, Nature.

[40]  M. Boyce,et al.  Constitutive models of rubber elasticity: A review , 2000 .

[41]  J. W. Gibbs,et al.  Scientific Papers , 2002, Molecular Imaging and Biology.

[42]  Ying Zhang,et al.  One-Step Nanoscale Assembly of Complex Structures via Harnessing of an Elastic Instability. , 2008, Nano letters.

[43]  Alan N. Gent,et al.  Surface Instabilities in Compressed or Bent Rubber Blocks , 1999 .

[44]  Toyoichi Tanaka,et al.  Phase transitions of gels. , 1991 .

[45]  M. Huggins Solutions of Long Chain Compounds , 1941 .

[46]  M. Biot Surface instability of rubber in compression , 1963 .

[47]  Toyoichi Tanaka,et al.  Mechanical instability of gels at the phase transition , 1987, Nature.

[48]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[49]  W. Luder Introduction to thermodynamics of irreversible processes , 1955 .

[50]  E. Hohlfeld Creasing, point -bifurcations, and the spontaneous breakdown of scale -invariance , 2008 .

[51]  Maurice A. Biot,et al.  Nonlinear and semilinear rheology of porous solids , 1973 .

[52]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[53]  A. Onuki,et al.  Theory of pattern formation in gels: Surface folding in highly compressible elastic bodies. , 1989, Physical review. A, General physics.

[54]  Z. Suo,et al.  A theory of coupled diffusion and large deformation in polymeric gels , 2008 .

[55]  A. Thomas,et al.  Effect of constraints on the equilibrium swelling of rubber vulcanizates , 1965 .

[56]  Zhigang Suo,et al.  A finite element method for transient analysis of concurrent large deformation and mass transport in gels , 2009 .

[57]  D. C. Spanner,et al.  Introduction to Thermodynamics , 1964 .