MgCl2/R'nAl(OR)3-n: an excellent activator/support for transition-metal complexes for olefin polymerization.

A new and effective method for the activation, and simultaneously, immobilization of bis(phenoxyimine) early-transition-metal complexes for olefin polymerization (known as FI catalysts), which makes use of MgCl(2)/R'(n)Al(OR)(3-n) as an activator/support, has been developed. Ti-, Zr-, and V-FI catalysts combined with this MgCl(2)-based compound can form highly active MgCl(2)-supported single-site catalysts capable of demonstrating superior catalytic properties, compared to the corresponding homogeneous methylaluminoxane- (Ti- and Zr-FI catalysts) or alkylaluminum-activation systems (V-FI catalysts), in terms of their catalytic activity, molecular weight, stereoselectivity, and comonomer incorporation. Additionally, these new catalysts can produce polymers of significant morphology with high efficiency. Notably, the MgCl(2)-based compounds can also effectively activate and immobilize the early-to-late transition-metal complexes that have emerged recently. Thus, the application of MgCl(2)-based compounds as activators/supports for transition-metal complexes for olefin polymerization provides a conceptually new strategy for the development of methylaluminoxane- and borate-free, high-performance, single-site catalysts capable of controlling polymer morphology.

[1]  R. Mülhaupt,et al.  Formation of Polyolefin‐block‐polystyrene Block Copolymers on Phenoxyimine Catalysts , 2006 .

[2]  R. Mülhaupt,et al.  The synthesis and X-ray structure of a phenoxyimine catalyst tailored for living olefin polymerisation and the synthesis of ultra-high molecular weight polyethylene and atactic polypropylene , 2006 .

[3]  Yasuhiko Suzuki,et al.  Polymerization of higher α-olefins with a bis(phenoxyimine)Ti complex/i-Bu3Al/Ph3CB(C6F5)4 : Formation of stereo- and regioirregular high molecular weight polymers with high efficiency , 2006 .

[4]  R. Duchateau,et al.  “Bound but Not Gagged”Immobilizing Single-Site α-Olefin Polymerization Catalysts , 2005 .

[5]  M. Mitani,et al.  Fluorinated bis(phenoxy–imine) Ti complexes with MAO: Remarkable catalysts for living ethylene and syndioselective living propylene polymerization , 2005 .

[6]  E. P. Talsi,et al.  Active Intermediates in Ethylene Polymerization over Titanium Bis(phenoxyimine) Catalysts , 2005 .

[7]  K. Takai,et al.  A novel heteroligated phenoxy-based titanium complex: Structure, stability, and ethylene polymerization behavior , 2005 .

[8]  T. Fujita,et al.  Propylene Polymerization Behavior of Fluorinated Bis(phenoxy‐imine) Ti Complexes with an MgCl2‐Based Compound (MgCl2‐Supported Ti‐Based Catalysts) , 2005 .

[9]  K. Takai,et al.  Synthesis of bis(phenoxyimine) Ti alkyl complexes and observation of living species by 1H nmr spectroscopy , 2005 .

[10]  Jing Sun,et al.  Titanium and zirconium complexes with novel phenoxy-phosphinimine ligands , 2005 .

[11]  Mei Wang,et al.  Preparation and structures of 6- and 7-coordinate salen-type zirconium complexes and their catalytic properties for oligomerization of ethylene , 2005 .

[12]  Stephen A. Miller,et al.  Unprecedented syndioselectivity and syndiotactic polyolefin melting temperature: polypropylene and poly(4-methyl-1-pentene) from a highly active, sterically expanded eta1-fluorenyl-eta1-amido zirconium complex. , 2005, Journal of the American Chemical Society.

[13]  S. Coles,et al.  Hybrid catalysts: the synthesis, structure and ethene polymerisation activity of (salicylaldiminato)(pyrrolylaldiminato) titanium complexes. , 2005, Chemical communications.

[14]  Shibo Wang,et al.  Preparation of spherical MgCl2 supported bis(imino)pyridyl iron(II) precatalyst for ethylene polymerization , 2005 .

[15]  M. Mitani,et al.  Selective Synthesis of Al-Terminated Polyethylenes Using a Bis(Phenoxy-Imine)Zr Complex with Methylalumoxane , 2005 .

[16]  Ryoji Mori,et al.  Ethylene/Higher α-Olefin Copolymerization Behavior of Fluorinated Bis(phenoxy−imine)titanium Complexes with Methylalumoxane: Synthesis of New Polyethylene-Based Block Copolymers , 2005 .

[17]  S. Coles,et al.  The synthesis, structure and ethene polymerisation catalysis of mono(salicylaldiminato) titanium and zirconium complexes. , 2005, Dalton transactions.

[18]  T. Fujita,et al.  Propene Polymerization with Bis(phenoxy–imine) Group 4 Transition Metal Complexes , 2005 .

[19]  G. Coates,et al.  New phenoxyketimine titanium complexes: combining isotacticity and living behavior in propylene polymerization. , 2004, Journal of the American Chemical Society.

[20]  L. Cavallo,et al.  Living propene polymerization with bis(phenoxyimine) group 4 metal catalysts: New strategies and old concepts , 2004 .

[21]  J. C. Chadwick,et al.  Activation of Titanium‐Based Single‐Site Catalysts for Ethylene Polymerization Using Supports of Type MgCl2/AlRn(OEt)3–n , 2004 .

[22]  T. Nakano,et al.  Living copolymerization of ethylene with norbornene catalyzed by bis(pyrrolide-imine) titanium complexes with MAO. , 2004, Journal of the American Chemical Society.

[23]  L. Warford,et al.  Vanadyl complexes bearing bi- and triphenolate chelate ligands: highly active ethylene polymerisation procatalysts. , 2004, Chemical communications.

[24]  M. Elsegood,et al.  Bis(benzimidazole)amine vanadium catalysts for olefin polymerisation and co-polymerisation: thermally robust, single-site catalysts activated by simple alkylaluminium reagents. , 2004, Chemical communications.

[25]  G. Coates,et al.  Gel permeation chromatography as a combinatorial screening method: identification of highly active heteroligated phenoxyimine polymerization catalysts. , 2004, Journal of the American Chemical Society.

[26]  J. C. Chadwick,et al.  MgCl2-based supports for the immobilization and activation of nickel diimine catalysts for polymerization of ethylene , 2004 .

[27]  Boping Liu,et al.  Precise arguments on the distribution of stereospecific active sites on MgCl2‐supported ziegler‐natta catalysts , 2004 .

[28]  G. Jin,et al.  Self-immobilized titanium and zirconium catalysts with phenoxy-imine ligands for ethylene polymerization. X-ray crystal structure of bis(N-(3-tert-butylsalicylidene)-4'-allyloxyanilinato) zirconium (IV) dichloride , 2004 .

[29]  J. C. Chadwick,et al.  MAO‐Free Activation of Metallocenes and other Single‐Site Catalysts for Ethylene Polymerization using Spherical Supports based on MgCl2 , 2004 .

[30]  Shibo Wang,et al.  Spherical MgCl2 Supported Iron Catalyst for Ethylene Polymerization: Effect of the Preparation Procedure on Catalyst Activity and the Morphology of Polyethylene Particles , 2004 .

[31]  T. Fujita,et al.  Olefin polymerization behavior of bis(phenoxy-imine) Zr, Ti, and V complexes with MgCl2-based cocatalysts , 2004 .

[32]  T. Fujita,et al.  Development of Single-Site New Olefin Polymerization Catalyst Systems Using MgCl2-Based Activators: MAO-Free MgCl2-Supported FI Catalyst Systems , 2004 .

[33]  J. Okuda,et al.  Pyrrolide-imine benzyl complexes of zirconium and hafnium: synthesis, structures, and efficient ethylene polymerization catalysis , 2004 .

[34]  Yue-sheng Li,et al.  New Titanium Complexes with Two β-Enaminoketonato Chelate Ligands: Syntheses, Structures, and Olefin Polymerization Activities , 2004 .

[35]  Y. Inoue,et al.  Phenoxy–Ether Ligated Ti Complexes for the Polymerization of Ethylene , 2004 .

[36]  M. Onda,et al.  Highly Isospecific Polymerization of Propylene with Bis(phenoxy-imine) Zr and Hf Complexes Using iBu3Al/Ph3CB(C6F5)4 as a Cocatalyst , 2004 .

[37]  C. Pellecchia,et al.  Bis(phenoxyimine)zirconium and -titanium catalysts affording prevailingly syndiotactic polypropylenes via opposite modes of monomer insertion , 2004 .

[38]  H. Terao,et al.  FI catalysts: new olefin polymerization catalysts for the creation of value-added polymers. , 2004, Chemical record.

[39]  S. Kojoh,et al.  Establishment of de facto standard catalysts in the polypropylene industry. , 2004, The chemical record.

[40]  D. Pappalardo,et al.  Polymerization of Conjugated Dienes Promoted by Bis(phenoxyimino)titanium Catalysts , 2003 .

[41]  H. Terao,et al.  Recent Advances in Phenoxy-Based Catalysts for Olefin Polymerization , 2003 .

[42]  Yasuhiko Suzuki,et al.  Highly active, thermally robust V-based new olefin polymerization catalyst system , 2003 .

[43]  G. Talarico,et al.  Syndiotactic Poly(propylene) from [Me2Si(3,6-di-tert-butyl-9-fluorenyl)(N-tert-butyl)]TiCl2–Based Catalysts: Chain-End or Enantiotopic-Sites Stereocontrol? , 2003 .

[44]  T. Nakano,et al.  Unprecedented living olefin polymerization derived from an attractive interaction between a ligand and a growing polymer chain. , 2003, Chemistry.

[45]  M. Mitani,et al.  Ethylene and propylene polymerization behavior of a series of bis(phenoxy–imine)titanium complexes , 2003 .

[46]  L. Cavallo,et al.  Origin of the regiochemistry of propene insertion at octahedral column 4 polymerization catalysts: design or serendipity? , 2003, Journal of the American Chemical Society.

[47]  N. Kashiwa,et al.  New olefin polymerization catalyst systems comprised of bis(phenoxy-imine) titanium complexes and MgCl2-based activators , 2003 .

[48]  H. Terao,et al.  Syndiospecific living propylene polymerization catalyzed by titanium complexes having fluorine-containing phenoxy-imine chelate ligands. , 2003, Journal of the American Chemical Society.

[49]  M. Onda,et al.  Polyethylenes with Uni-, Bi-, and Trimodal Molecular Weight Distributions Produced with a Single Bis(phenoxy−imine)zirconium Complex , 2003 .

[50]  V. C. Gibson,et al.  Advances in non-metallocene olefin polymerization catalysis. , 2003, Chemical reviews.

[51]  G. Coates,et al.  Syndiospecific living catalysts for propylene polymerization: Effect of fluorination on activity, stereoselectivity, and termination , 2002 .

[52]  T. Nakano,et al.  Catalytic behavior of bis(pyrrolide-imine) and bis(phenoxy-imine) titanium complexes for the copolymerization of ethylene with propylene, 1-hexene, or norbornene , 2002 .

[53]  G. Koten,et al.  Homogeneous vanadium-based catalysts for the Ziegler–Natta polymerization of α-olefins , 2002 .

[54]  M. Seth,et al.  A Density Functional Embedded Cluster Study of Proposed Active Sites in Heterogeneous Ziegler−Natta Catalysts , 2002 .

[55]  S. Kojoh,et al.  Zirconium complexes having phenoxy/cycloalkylimine chelate ligands for the polymerization of ethylene for vinyl-terminated low molecular weight polyethylenes , 2002 .

[56]  N. Kashiwa,et al.  FI Catalysts: A New Family of High Performance Catalysts for Olefin Polymerization , 2002 .

[57]  Y. Inoue,et al.  New Titanium Complexes Bearing Two Indolide-Imine Chelate Ligands for the Polymerization of Ethylene , 2002 .

[58]  Weizheng Zhou,et al.  Syntheses of titanium(IV) complexes with mono-Cp and Schiff base ligands and their catalytic activities for ethylene polymerization and ethylene/1-hexene copolymerization , 2002 .

[59]  T. Nakano,et al.  Living polymerization of ethylene catalyzed by titanium complexes having fluorine-containing phenoxy-imine chelate ligands. , 2002, Journal of the American Chemical Society.

[60]  N. Kashiwa,et al.  Synthesis and Ethylene Polymerization Behavior of a New Titanium Complex Having Two Imine–Phenoxy Chelate Ligands , 2002 .

[61]  G. Yap,et al.  Stability of Metal−Carbon Bond versus Metal Reduction during Ethylene Polymerization Promoted by a Vanadium Complex: The Role of the Aluminum Cocatalyst , 2002 .

[62]  Y. Imanishi,et al.  Olefin Polymerization and Ring-Opening Metathesis Polymerization of Norbornene by (Arylimido)(aryloxo)vanadium(V) Complexes of the Type VX2(NAr)(OAr`). Remarkable Effect of Aluminum Cocatalyst for the Coordination and Insertion and Ring-Opening Metathesis Polymerization , 2002 .

[63]  T. Nakano,et al.  New Titanium Complexes Having Two Pyrrolide−Imine Chelate Ligands: Syntheses, Structures, and Ethylene Polymerization Behavior , 2001 .

[64]  P. Galli,et al.  Technology: driving force behind innovation and growth of polyolefins , 2001 .

[65]  T. Nakano,et al.  A Family of Zirconium Complexes Having Two Phenoxy−Imine Chelate Ligands for Olefin Polymerization , 2001 .

[66]  T. Fujita,et al.  FI Catalysts: super active new ethylene polymerization catalysts , 2001 .

[67]  A. Pombeiro,et al.  Syntheses, structure, and reactivity of chiral titanium compounds: procatalysts for olefin polymerization. , 2001, Chemistry.

[68]  G. Koten,et al.  Vanadium(III) and -(IV) Complexes with O,N-Chelating Aminophenolate Ligands: Synthesis, Characterization and Activity in Ethene/Propene Copolymerization , 2001 .

[69]  Boping Liu,et al.  Stopped‐Flow Techniques in Ziegler Catalysis , 2001 .

[70]  N. Kashiwa,et al.  Polymerization of 1‐hexene with bis[N‐(3‐tert‐butylsalicylidene)phenylaminato]titanium(IV) dichloride using iBu3Al/Ph3CB(C6F5)4 as a cocatalyst , 2000 .

[71]  L. Cavallo,et al.  Geometry and stability of titanium chloride species adsorbed on the (100) and (110) cuts of the MgCl2 support of the heterogeneous Ziegler-Natta catalysts , 2000 .

[72]  L. Jerzykiewicz,et al.  Syntheses and Structural Characterization of Vanadium and Aluminum Thiolates , 2000 .

[73]  Y. Kissin,et al.  A New Cocatalyst for Metallocene Complexes in Olefin Polymerization , 2000 .

[74]  T. Marks,et al.  Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships. , 2000, Chemical reviews.

[75]  M. Brookhart,et al.  Late-metal catalysts for ethylene homo- and copolymerization. , 2000, Chemical reviews.

[76]  B. Tesche,et al.  Propene Polymerization with Silica-Supported Metallocene/MAO Catalysts. , 2000, Chemical reviews.

[77]  H. Alt,et al.  Effect of the Nature of Metallocene Complexes of Group IV Metals on Their Performance in Catalytic Ethylene and Propylene Polymerization. , 2000, Chemical reviews.

[78]  G. Hlatky Heterogeneous single-site catalysts for olefin polymerization. , 2000, Chemical reviews.

[79]  Edmund M. Carnahan,et al.  Supported Metallocene Catalysts , 2000 .

[80]  T. Nakano,et al.  New Bis(salicylaldiminato) Titanium Complexes for Ethylene Polymerization , 1999 .

[81]  P. Witte,et al.  Linked Cyclopentadienyl−Amide Complexes of Divalent, Trivalent, and Tetravalent Vanadium: A Vanadium “Constrained Geometry Catalyst”† , 1999 .

[82]  George J. P. Britovsek,et al.  Auf der Suche nach einer neuen Generation von Katalysatoren zur Olefinpolymerisation: „Leben”︁ jenseits der Metallocene , 1999 .

[83]  G. Britovsek,et al.  The Search for New-Generation Olefin Polymerization Catalysts: Life beyond Metallocenes. , 1999, Angewandte Chemie.

[84]  J. Bercaw,et al.  Mechanisms of Stereocontrol for Doubly Silylene-Bridged Cs- and C1-Symmetric Zirconocene Catalysts for Propylene Polymerization. Synthesis and Molecular Structure of Li2[(1,2-Me2Si)2{C5H2-4-(1R,2S,5R-menthyl)}{C5H-3,5-(CHMe2)2)}]·3THF and [(1,2-Me2Si)2{η5-C5H2-4-(1R,2S,5R-menthyl)}{η5-C5H-3,5-(CHMe2 , 1999 .

[85]  M. Kristen Supported metallocene catalysts with MAO and boron activators , 1999 .

[86]  J. Chien Supported metallocene polymerization catalysis , 1999 .

[87]  R. Waymouth,et al.  Group 4 ansa-Cyclopentadienyl-Amido Catalysts for Olefin Polymerization. , 1998, Chemical reviews.

[88]  Maurice Brookhart,et al.  Highly Active Iron and Cobalt Catalysts for the Polymerization of Ethylene , 1998 .

[89]  V. C. Gibson,et al.  Polystyrene supports for vanadium ethylene polymerisation catalysts , 1998 .

[90]  Andrew J. P. White,et al.  Novel olefin polymerization catalysts based on iron and cobalt , 1998 .

[91]  W. Kaminsky Highly active metallocene catalysts for olefin polymerization , 1998 .

[92]  M. Leskelä,et al.  Ethylene polymerizations with novel tantalum(V)aminopyridinato complex/MAO systems , 1997 .

[93]  M. Ribeiro,et al.  Supported Metallocene Complexes for Ethylene and Propylene Polymerizations: Preparation and Activity , 1997 .

[94]  J. Cole,et al.  Novel µ-methyl complexes of vanadium and their relevance to bimolecular deactivation of homogeneous imidovanadium polymerisation catalysts , 1997 .

[95]  M. Bochmann Cationic Group 4 metallocene complexes and their role in polymerisation catalysis: the chemistry of well defined Ziegler catalysts , 1996 .

[96]  David Fischer,et al.  Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts , 1995 .

[97]  B. Rieger,et al.  Stereospezifische Olefinpolymerisation mit chiralen Metallocenkatalysatoren , 1995 .

[98]  J. Fischer,et al.  Synthesis, Structure, and Olefin Polymerization Activity of Vanadium(V) Catalysts Stabilized by Imido and Hydrotris(pyrazolyl)borato Ligands , 1995 .

[99]  Maurice Brookhart,et al.  New Pd(II)- and Ni(II)-Based Catalysts for Polymerization of Ethylene and .alpha.-Olefins , 1995 .

[100]  N. Coville,et al.  Homogeneous group 4 metallocene ziegler-natta catalysts: The influence of cyclopentadienyl-ring substituents , 1994 .

[101]  K. Soga,et al.  Structure of polypropene and poly(ethylene‐co‐propene) produced with an alumina‐supported CpTiCl3/common alkylaluminium catalyst system , 1994 .

[102]  S. Sivaram,et al.  An unusually stable supported bis(cyclopentadienyl)titanium dichloride-trialkylaluminum catalyst system for ethylene polymerization , 1993 .

[103]  T. Marks Surface-bound metal hydrocarbyls. Organometallic connections between heterogeneous and homogeneous catalysis , 1992 .

[104]  T. Marks,et al.  [(CH3)5C5]2Th(CH3)2 surface chemistry and catalysis. Direct NMR spectroscopic observation of surface alkylation and ethylene insertion/polymerization on MgCl2 , 1988 .

[105]  P. A. Vigato,et al.  Catalytic activity of vanadium(III) and oxovanadium(IV) complexes in the ziegler-natta synthesis of ethylenepropylene elastomers , 1985 .

[106]  N. Kashiwa,et al.  Ethylene polymerization by supported vanadium catalyst. effect of carrier on activity and relationship between concentration of v(iii) and activity , 1983 .