Simulating from the Copula that Generates the Maximal Probability for a Joint Default Under Given (Inhomogeneous) Marginals

Starting from two default times with given univariate distribution functions, the copula which maximizes the probability of a joint default can be computed in closed form. This result can be retrieved from Markov-chain theory, where it is known under the terminology “maximal coupling”, but typically formulated without copulas. For inhomogeneous marginals the solution is not represented by the comonotonicity copula, opposed to a common modeling (mal-)practice in the financial industry. Moreover, a stochastic model that respects the marginal laws and attains the upper-bound copula for joint defaults can be inferred from the maximal-coupling construction. We formulate and illustrate this result in the context of copula theory and motivate its importance for portfolio-credit risk modeling. Moreover, we present a sampling strategy for the “maximal-coupling copula”.

[1]  Ludger Rüschendorf,et al.  Distributions with fixed marginals and related topics , 1999 .

[2]  Paul Embrechts,et al.  Worst VaR scenarios , 2005 .

[3]  P. Schönbucher,et al.  Copula-Dependent Defaults in Intensity Models , 2001 .

[4]  C. Genest,et al.  A Primer on Copulas for Count Data , 2007, ASTIN Bulletin.

[5]  Paul Embrechts,et al.  Bounds for Functions of Dependent Risks , 2006, Finance Stochastics.

[6]  Ludger Rüschendorf,et al.  Bounds for joint portfolios of dependent risks , 2012 .

[7]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[8]  Paul Embrechts,et al.  Bounds for functions of multivariate risks , 2006 .

[9]  Mistakes in the Market Approach to Correlation: A Lesson For Future Stress-Testing , 2013 .

[10]  Thomas Mikosch,et al.  Copulas: Tales and facts , 2006 .

[11]  Ludger Rüschendorf,et al.  Computation of sharp bounds on the distribution of a function of dependent risks , 2012, J. Comput. Appl. Math..

[12]  Paul Embrechts,et al.  Copulas: A Personal View , 2009 .

[13]  Ludger Rüschendorf,et al.  Computation of Sharp Bounds on the Expected Value of a Supermodular Function of Risks with Given Marginals , 2015, Commun. Stat. Simul. Comput..

[14]  Ludger Rüschendorf,et al.  Sharp Bounds for Sums of Dependent Risks , 2013, Journal of Applied Probability.

[15]  Albert W. Marshall,et al.  Copulas, marginals, and joint distributions , 1996 .

[16]  H. Thorisson Coupling, stationarity, and regeneration , 2000 .