Option-Implied Risk-Neutral Distributions and Implied Binomial Trees

Solving backward through an option pricing model to find the “implied volatility” (IV) that makes the model value equal the market price is a technique nearly as old as the Black-Scholes model itself. In fact, calculating the implied volatility yields the entire implied risk-neutral returns distribution: It is lognormal with mean equal to the riskless interest rate and constant volatility equal to IV. But research across many different options markets has shown clearly that neither implied nor empirical volatility is constant, and returns distributions appear to be far from lognormal. This has led to new theoretical pricing models that can incorporate non-constant volatility and more general returns distributions. It has also led to techniques for obtaining the entire risk-neutral returns distribution implied in a full set of market prices for options with different strikes and maturities. One of the most general and flexible approaches, first suggested by Rubinstein, is to construct an implied binomial tree.This article leads off our Symposium on the topic of implied distributions. In it, Jackwerth presents a comprehensive review of the literature on option-implied risk neutral distributions and implied valuation trees.

[1]  P. H. Kevin Chang,et al.  ERM Realignment Risk and its Economic Determinants as Reflected in Cross‐rate Options , 1998 .

[2]  Marco Avellaneda,et al.  Calibrating Volatility Surfaces Via Relative-Entropy Minimization , 1996 .

[3]  David S. Bates Post-&Apos;87 Crash Fears in S&P 500 Futures Options , 1997 .

[4]  Olivier Ledoit,et al.  Gain, Loss, and Asset Pricing , 2000, Journal of Political Economy.

[5]  M. Stutzer A Simple Nonparametric Approach to Derivative Security Valuation , 1996 .

[6]  Thomas F. Coleman,et al.  Reconstructing the unknown volatility function , 1998 .

[7]  M. Rockinger,et al.  Reading Interest Rate and Bond Futures Options' Smiles: How PIBOR and Notional Operators Appreciated the 1997 French Snap Election , 1998 .

[8]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.

[9]  William R. Melick,et al.  Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis , 1997, Journal of Financial and Quantitative Analysis.

[10]  Tie Su,et al.  SKEWNESS AND KURTOSIS IN S&P 500 INDEX RETURNS IMPLIED BY OPTION PRICES , 1996 .

[11]  Lars E. O. Svensson,et al.  New Techniques to Extract Market Expectations from Financial Instruments , 1997 .

[12]  R. J. Ritchey,et al.  CALL OPTION VALUATION FOR DISCRETE NORMAL MIXTURES , 1990 .

[13]  Jens Carsten Jackwerth,et al.  Generalized Binomial Trees , 1996 .

[14]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[15]  Mark Rubinstein,et al.  Edgeworth Binomial Trees , 1998 .

[16]  R. Jarrow,et al.  APPROXIMATE OPTION VALUATION FOR ARBITRARY STOCHASTIC PROCESSES , 1982 .

[17]  Leif Andersen,et al.  The equity option volatility smile: an implicit finite-difference approach , 1997 .

[18]  Andrew W. Lo,et al.  Nonparametric estimation of state-price densities implicit in financial asset prices , 1995, Proceedings of 1995 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[19]  M. Osborne Brownian Motion in the Stock Market , 1959 .

[20]  Jeff Fleming,et al.  Implied volatility functions: empirical tests , 1996, IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[21]  M. Rockinger,et al.  Reading the Smile: The Message Conveyed by Methods Which Infer Risk Neutral Densities , 1997 .

[22]  F. Longstaff Option Pricing and the Martingale Restriction , 1995 .

[23]  Emanuel Derman,et al.  STOCHASTIC IMPLIED TREES: ARBITRAGE PRICING WITH STOCHASTIC TERM AND STRIKE STRUCTURE OF VOLATILITY , 1998 .

[24]  J. Jackwerth Recovering Risk Aversion from Option Prices and Realized Returns , 1998 .

[25]  M. Rubinstein. Implied Binomial Trees , 1994 .

[26]  Menachem Brenner,et al.  No-Arbitrage Option Pricing: New Evidence on the Validity of the Martingale Property , 1997 .

[27]  David S. Bates Testing Option Pricing Models , 1995 .

[28]  D. Heath,et al.  Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation , 1990, Journal of Financial and Quantitative Analysis.

[29]  R. Tompkins Implied volatility surfaces: uncovering regularities for options on financial futures , 2001 .

[30]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[31]  Cameron Rookley Fully Exploiting the Information Content of Intra Day Option Quotes: Applications in Option Pricing , 1997 .

[32]  S. Posner,et al.  Valuing Exotic Options by Approximating the SPD with Higher Moments , 1998 .

[33]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[34]  Allan M. Malz Using option prices to estimate realignment probabilities in the European Monetary System: the case of sterling-mark , 1996 .

[35]  K. Toft.,et al.  Options on Leveraged Equity: Theory and Empirical Tests , 1997 .

[36]  Bhupinder Bahra Implied Risk-Neutral Probability Density Functions from Option Prices: Theory and Application , 1997 .

[37]  Bruce Mizrach,et al.  Did Option Prices Predict the ERM Crises , 1996 .

[38]  Allan M. Malz Estimating the Probability Distribution of the Future Exchange Rate from Option Prices , 1997 .

[39]  Tie Su,et al.  Implied Volatility Skews and Stock Index Skewness and Kurtosis Implied by S&P 500 Index Option Prices , 1997 .

[40]  J. Cochrane,et al.  Beyond Arbitrage: 'Good Deal' Asset Price Bounds in Incomplete Markets , 1996 .

[41]  Mark Britten-Jones,et al.  Option Prices, Implied Price Processes, and Stochastic Volatility , 2000 .

[42]  Jean-Paul Laurent,et al.  Building a Consistent Pricing Model from Observed Option Prices , 1998 .

[43]  Eric Jondeau,et al.  Estimating Gram-Charlier Expansions Under Positivity Constraints , 1999 .

[44]  J. Campa,et al.  Implied Exchange Rate Distributions: Evidence from OTC Option Markets , 1997 .

[45]  M. Pritsker Nonparametric Density Estimation and Tests of Continuous Time Interest Rate Models , 1998 .

[46]  S. Ross Options and Efficiency , 1976 .

[47]  James N. Bodurtha,et al.  Nonparametric estimation of an implied volatility surface , 1999 .

[48]  M. Rubinstein. Nonparametric tests of alternative option pricing models using all reported trades and quotes on the , 1985 .

[49]  Rama Cont,et al.  Service de Physique de l’État Condensé, Centre d’études de Saclay , 1997 .

[50]  S. Irwin,et al.  An examination of option-implied s&p 500 futures price distributions , 1996 .

[51]  Michael Rockinger,et al.  Density-embedding Functions , 1997 .

[52]  K. Toft.,et al.  Constructing Binomial Trees From Multiple Implied Probability Distributions , 1999 .

[53]  D. Madan,et al.  Estimation of risk-neutral and statistical densities by Hermite polynomial approximation: with an application to Eurodollar futures options , 1996 .

[54]  James B. McDonald,et al.  A General Distribution for Describing Security Price Returns , 1987 .

[55]  Rama Cont Beyond implied volatility , 1998 .

[56]  A. Lo,et al.  Nonparametric Risk Management and Implied Risk Aversion , 2000 .

[57]  Charles P. Thomas,et al.  The sovereignty option: the Quebec referendum and market views on the Canadian dollar , 1996 .

[58]  Stylianos Perrakis,et al.  A Jumping Smile , 1997 .

[59]  Menachem Brenner,et al.  Implied foreign exchange rates using options prices , 1996 .

[60]  Dilip B. Madan,et al.  DETERMINING VOLATILITY SURFACES AND OPTION VALUES FROM AN IMPLIED VOLATILITY SMILE , 2001 .

[61]  P. Buchen,et al.  The Maximum Entropy Distribution of an Asset Inferred from Option Prices , 1996, Journal of Financial and Quantitative Analysis.

[62]  Goldman,et al.  Implied Trinomial Trees of the Volatility Smile , 1996 .

[63]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[64]  Victor Isakov,et al.  The inverse problem of option pricing , 1997 .

[65]  S. Irwin,et al.  Option‐based evidence of the nonstationarity of expected S&P 500 futures price distributions , 1992 .

[66]  Emanuel Derman,et al.  Implied Trinomial Tress of the Volatility Smile , 1996 .

[67]  P. H. Kevin Chang,et al.  Arbitrage-Based Tests of Target-Zone Credibility: Evidence from ERM Cross-Rate Options , 1998 .

[68]  Nusret Cakici,et al.  How to Grow a Smiling Tree , 1998 .

[69]  Recovering Risk Aversion from Option Prices and Realized Returns , 2000 .

[70]  J. Rosenberg Pricing Multivariate Contingent Claims Using Estimated Risk-Neutral Density Functions , 1997 .

[71]  Merton H. Miller,et al.  Prices for State-contingent Claims: Some Estimates and Applications , 1978 .

[72]  R. Engle,et al.  Option Hedging Using Empirical Pricing Kernels , 1997 .

[73]  David S. Bates The Crash of ʼ87: Was It Expected? The Evidence from Options Markets , 1991 .

[74]  Douglas T. Breeden,et al.  Prices of State-Contingent Claims Implicit in Option Prices , 1978 .

[75]  Olivier Ledoit,et al.  Relative Pricing of Options with Stochastic Volatility , 1998 .

[76]  P. Garcia,et al.  Recovering probabilistic information from option markets: Tests of distributional assumptions , 1996 .

[77]  Bruno Dupire Pricing with a Smile , 1994 .

[78]  M. Rubinstein.,et al.  Recovering Probability Distributions from Option Prices , 1996 .

[79]  José Manuel Campa,et al.  Options-based analysis of emerging market exchange rate expectations: Brazil's real plan, 1994-1999, An , 2000 .

[80]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.