Odour-mediated oviposition site selection in Aedes aegypti depends on aquatic stage and density

[1]  B. Alsanius,et al.  Odor-mediated response of gravid Aedes aegypti to mosquito-associated symbiotic bacteria. , 2022, Acta tropica.

[2]  E. Buckner,et al.  A Field Efficacy Evaluation of In2Care Mosquito Traps in Comparison with Routine Integrated Vector Management at Reducing Aedes aegypti. , 2021, Journal of the American Mosquito Control Association.

[3]  R. Sang,et al.  Larval sites of the mosquito Aedes aegypti formosus in forest and domestic habitats in Africa and the potential association with oviposition evolution , 2021, Ecology and evolution.

[4]  P. Onyango,et al.  Grass-like plants release general volatile cues attractive for gravid Anopheles gambiae sensu stricto mosquitoes , 2021, Parasites & vectors.

[5]  M. Lorenzo,et al.  Multi-Omic Analysis of Symbiotic Bacteria Associated With Aedes aegypti Breeding Sites , 2021, Frontiers in Microbiology.

[6]  R. Ignell,et al.  Development of a chimeric odour blend for attracting gravid malaria vectors , 2021, Malaria journal.

[7]  A. Vega-Rúa,et al.  Behavioural and antennal responses of Aedes aegypti (l.) (Diptera: Culicidae) gravid females to chemical cues from conspecific larvae , 2021, PloS one.

[8]  Siyang Xia Laboratory Oviposition Choice of Aedes aegypti (Diptera: Culicidae) From Kenya and Gabon: Effects of Conspecific Larvae, Salinity, Shading, and Microbiome , 2021, Journal of Medical Entomology.

[9]  W. Takken,et al.  Exploiting the chemical ecology of mosquito oviposition behavior in mosquito surveillance and control: a review , 2020, Journal of Vector Ecology.

[10]  M. Dhimal,et al.  Does winter cold really limit the dengue vector Aedes aegypti in Europe? , 2020, Parasites & Vectors.

[11]  R. Ignell,et al.  Malaria mosquito chemical ecology. , 2020, Current opinion in insect science.

[12]  W. Takken,et al.  Chemical Mediation of Oviposition by Anopheles Mosquitoes: a Push-Pull System Driven by Volatiles Associated with Larval Stages , 2020, Journal of Chemical Ecology.

[13]  W. Takken,et al.  Synergism between nonane and emanations from soil as cues in oviposition‐site selection of natural populations of Anopheles gambiae and Culex quinquefasciatus , 2020, Malaria journal.

[14]  M. Wooding,et al.  Controlling mosquitoes with semiochemicals: a review , 2020, Parasites & Vectors.

[15]  M. Jacobs-Lorena,et al.  Mosquito Microbiota and Implications for Disease Control. , 2019, Trends in parasitology.

[16]  W. Takken,et al.  The Influence of Larval Stage and Density on Oviposition Site-Selection Behavior of the Afrotropical Malaria Mosquito Anopheles coluzzii (Diptera: Culicidae) , 2019, Journal of Medical Entomology.

[17]  J. Picimbon,et al.  Cartography of odor chemicals in the dengue vector mosquito (Aedes aegypti L., Diptera/Culicidae) , 2019, Scientific Reports.

[18]  C. Apperson,et al.  A Diverse Microbial Community Supports Larval Development and Survivorship of the Asian Tiger Mosquito (Diptera: Culicidae) , 2019, Journal of Medical Entomology.

[19]  O. Ovadia,et al.  Multi‐scale oviposition site selection in two mosquito species , 2018, Ecological Entomology.

[20]  G. Crasta,et al.  Cannibalism in temporary waters: Simulations and laboratory experiments revealed the role of spatial shape in the mosquito Aedes albopictus , 2018, PloS one.

[21]  E. Walker,et al.  Cannibalism of Egg and Neonate Larvae by Late Stage Conspecifics of Anopheles gambiae (Diptera: Culicidae): Implications for Ovipositional Studies , 2018, Journal of Medical Entomology.

[22]  R. Ignell,et al.  Sweet attraction: sugarcane pollen-associated volatiles attract gravid Anopheles arabiensis , 2018, Malaria Journal.

[23]  C. Pirk,et al.  Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors , 2018, PLoS neglected tropical diseases.

[24]  G. Birgersson,et al.  Host-plant location by the Guatemalan potato moth Tecia solanivora is assisted by floral volatiles , 2017, Chemoecology.

[25]  G. Birgersson,et al.  Host-plant location by the Guatemalan potato moth Tecia solanivora is assisted by floral volatiles , 2017, Chemoecology.

[26]  R. Ignell,et al.  The role of grass volatiles on oviposition site selection by Anopheles arabiensis and Anopheles coluzzii , 2017, Malaria Journal.

[27]  T. Hance,et al.  Does insect mother know under what conditions it will make their offspring live? , 2017, Insect science.

[28]  R. Ignell,et al.  A(maize)ing attraction: gravid Anopheles arabiensis are attracted and oviposit in response to maize pollen odours , 2017, Malaria Journal.

[29]  R. Ignell,et al.  Rice volatiles lure gravid malaria mosquitoes, Anopheles arabiensis , 2016, Scientific Reports.

[30]  J. F. Day Mosquito Oviposition Behavior and Vector Control , 2016, Insects.

[31]  L. Zwiebel,et al.  Suboptimal Larval Habitats Modulate Oviposition of the Malaria Vector Mosquito Anopheles coluzzii , 2016, PloS one.

[32]  V. Veer,et al.  Molecular characterization of midgut microbiota of Aedes albopictus and Aedes aegypti from Arunachal Pradesh, India , 2015, Parasites & Vectors.

[33]  H. Masuh,et al.  Oviposition Behavior in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Response to the Presence of Heterospecific and Conspecific Larvae , 2015, Journal of Medical Entomology.

[34]  D. Strickman,et al.  Density-Dependent Oviposition by Female Aedes albopictus (Diptera: Culicidae) Spreads Eggs Among Containers During the Summer but Accumulates Them in the Fall , 2015, Journal of medical entomology.

[35]  E. Muturi,et al.  Effect of Larval Competition on Extrinsic Incubation Period and Vectorial Capacity of Aedes albopictus for Dengue Virus , 2015, PloS one.

[36]  A. Borg-Karlson,et al.  Discovery of an oviposition attractant for gravid malaria vectors of the Anopheles gambiae species complex , 2015, Malaria Journal.

[37]  Z. Jaal,et al.  Investigation of mosquito oviposition pheromone as lethal lure for the control of Aedes aegypti (L.) (Diptera: Culicidae) , 2015, Parasites & Vectors.

[38]  H. Masuh,et al.  Electrophysiological and behavioural response of Aedes albopictus to n‐heinecosane, an ovipositional pheromone of Aedes aegypti , 2014 .

[39]  B. Torto,et al.  Volatile phytochemicals as mosquito semiochemicals. , 2014, Phytochemistry letters.

[40]  S. Lindsay,et al.  Habitat discrimination by gravid Anopheles gambiae sensu lato – a push-pull system , 2014, Malaria Journal.

[41]  S. Juliano,et al.  Oviposition habitat selection by container‐dwelling mosquitoes: responses to cues of larval and detritus abundances in the field , 2014, Ecological entomology.

[42]  B. D. Parashar,et al.  Midgut Microbial Community of Culex quinquefasciatus Mosquito Populations from India , 2013, PloS one.

[43]  A. Cohuet,et al.  Human Skin Volatiles: A Review , 2013, Journal of Chemical Ecology.

[44]  T. Burkot,et al.  Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera: Culicidae) , 2012, Parasites & Vectors.

[45]  L. Blaustein,et al.  Modelling evolutionarily stable strategies in oviposition site selection, with varying risks of predation and intraspecific competition , 2012, Evolutionary Ecology.

[46]  L. P. Lounibos,et al.  Distributions of Competing Container Mosquitoes Depend on Detritus Types, Nutrient Ratios, and Food Availability , 2011, Annals of the Entomological Society of America.

[47]  A. Githeko,et al.  Productivity of Malaria Vectors from Different Habitat Types in the Western Kenya Highlands , 2011, PloS one.

[48]  T. Scott,et al.  Oviposition Site Selection by the Dengue Vector Aedes aegypti and Its Implications for Dengue Control , 2011, PLoS neglected tropical diseases.

[49]  M. A. Berbert-Molina,et al.  Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. , 2010, Acta tropica.

[50]  A. Borg-Karlson,et al.  Optimization of Solid-Phase Microextraction Sampling for Analysis of Volatile Compounds Emitted from Oestrous Urine of Mares , 2010, Zeitschrift für Naturforschung C - A Journal of Biosciences.

[51]  K. Ganesan,et al.  Electroantennogram, flight orientation, and oviposition responses of Aedes aegypti to the oviposition pheromone n-heneicosane , 2009, Parasitology Research.

[52]  C. Ogbunugafor,et al.  Regulation of Oviposition in Anopheles gambiae s.s.: Role of Inter- and Intra-Specific Signals , 2008, Journal of Chemical Ecology.

[53]  J. Millar,et al.  Attraction of female Culex quinquefasciatus Say (Diptera: Culicidae) to odors from chicken feces. , 2008, Journal of insect physiology.

[54]  L. P. Lounibos,et al.  Larval competition alters susceptibility of adult Aedes mosquitoes to dengue infection , 2008, Proceedings of the Royal Society B: Biological Sciences.

[55]  R. C. Malhotra,et al.  Studies of Aedes aegypti (Diptera: Culicidae) ovipositional responses to newly identified semiochemicals from conspecific eggs , 2006 .

[56]  L. P. Lounibos,et al.  LARVAL COMPETITION DIFFERENTIALLY AFFECTS ARBOVIRUS INFECTION IN AEDES MOSQUITOES. , 2005, Ecology.

[57]  L. Cruz‐López,et al.  VEGETATION-DERIVED CUES FOR THE SELECTION OF OVIPOSITION SUBSTRATES BY ANOPHELES ALBIMANUS UNDER LABORATORY CONDITIONS , 2005, Journal of the American Mosquito Control Association.

[58]  J. Mccann,et al.  New evidence of the effects of agro-ecologic change on malaria transmission. , 2005, The American journal of tropical medicine and hygiene.

[59]  Y. Michalakis,et al.  Pollution by conspecifics as a component of intraspecific competition among Aedes aegypti larvae , 2005 .

[60]  Amy C Morrison,et al.  Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. , 2003, The American journal of tropical medicine and hygiene.

[61]  R. Shine,et al.  Oviposition site selection by mosquitoes is affected by cues from conspecific larvae and anuran tadpoles , 2003 .

[62]  Briegel,et al.  Protein catabolism in mosquitoes: ureotely and uricotely in larval and imaginal Aedes aegypti. , 2001, Journal of insect physiology.

[63]  L. Blaustein,et al.  Experimental evidence for predation risk sensitive oviposition by a mosquito, Culiseta longiareolata , 1999 .

[64]  J. Millar,et al.  Electroantennogram and oviposition bioassay responses of Culex quinquefasciatus and Culex tarsalis (Diptera: Culicidae) to chemicals in odors from Bermuda grass infusions. , 1999, Journal of medical entomology.

[65]  D. Kline,et al.  Larval rearing water and preexisting eggs influence oviposition by Aedes aegypti and Ae. albopictus (Diptera: Culicidae). , 1998, Journal of medical entomology.

[66]  M. Rau,et al.  Oviposition attraction and repellency of Aedes aegypti (Diptera: Culicidae) to waters from conspecific larvae subjected to crowding, confinement, starvation, or infection. , 1998, Journal of medical entomology.

[67]  K. Dhileepan Physical Factors and Chemical Cues in the Oviposition Behavior of Arboviral Vectors Culex annulirostris and Culex molestus (Diptera: Culicidae) , 1997 .

[68]  S. Church,et al.  Ovipositional preferences and larval cannibalism in the Neotropical mosquito Trichoprosopon digitatum (Diptera: Culicidae) , 1994, Animal Behaviour.

[69]  C. C. Marques,et al.  [Effect of larval, pupal, and egg extracts on the oviposition behavior of female Aedes(s) albopictus (Skuse)]. , 1992, Revista de Saúde Pública.

[70]  W. Takken,et al.  Effect of rearing temperature and larval density on larval survival, age at pupation and adult size of Anopheles gambiae , 1992 .

[71]  M. Mulla,et al.  Identification of oviposition attractants for Culex quinquefasciatus from fermented Bermuda grass infusions. , 1992, Journal of the American Mosquito Control Association.

[72]  T. Livdahl,et al.  The complex hatching response of Aedes eggs to larval density , 1984 .

[73]  B. R. Laurence,et al.  erythro-6-Acetoxy-5-hexadecanolide, the major component of a mosquito oviposition attractant pheromone , 1982 .

[74]  M. Mulla,et al.  Ovipositional Repellency of Fatty Acids and Their Derivatives Against Culex and Aedes Mosquitoes , 1982 .

[75]  T. Ikeshoji,et al.  Overcrowding Factors of Mosquito Larvae: Isolation and Chemical Identification , 1974 .

[76]  A. Starratt,et al.  An oviposition pheromone of the mosquito Culex tarsalis: diglyceride composition of the active fraction. , 1972, Biochimica et biophysica acta.

[77]  R. Soman,et al.  Studies on the preference shown by ovipositing females of Aedes aegypti for water containing immature stages of the same species. , 1970, Journal of medical entomology.

[78]  B. Ephrussi,et al.  A Technique of Transplantation for Drosophila , 1936, The American Naturalist.

[79]  V. Veer,et al.  Overcrowding Effects on Larval Development of Four Mosquito Species Aedes Albopictus, Aedes Aegypti, Culex Quinquefasciatus and Anopheles Stephensi , 2017 .

[80]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[81]  R. C. Malhotra,et al.  Heneicosane: an oviposition-attractant pheromone of larval origin in Aedes aegypti mosquito. , 2000 .

[82]  L. Blaustein Oviposition Site Selection in Response to Risk of Predation: Evidence from Aquatic Habitats and Consequences for Population Dynamics and Community Structure , 1999 .

[83]  E. Walker,et al.  Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. , 1992, Annual review of entomology.

[84]  M. Bentley,et al.  Chemical ecology and behavioral aspects of mosquito oviposition. , 1989, Annual review of entomology.

[85]  Y. Wada Effect of larval density on the development of Aedes aegypti (L.) and the size of adults. , 1965 .