Triple Massey products on curves, Fay's trisecant identity and tangents to the canonical embedding

We show that Fay's trisecant identity follows from the A_{infinity}-constraint between certain triple Massey products in the derived category of coherent sheaves on a curve. We also deduce the matrix analogue of this identity that can be conveniently formulated using quasideterminants of matrices with non-commuting entries. On the other hand, looking at more special triple Massey products we derive a formula for the tangent line to a canonically embedded curve at a given point.

[1]  A. Polishchuk Classical Yang–Baxter Equation and the A∞-Constraint , 2002 .

[2]  A. Polishchuk Homological mirror symmetry with higher products , 1999, math/9901025.

[3]  A. Polishchuk Massey and Fukaya products on elliptic curves , 1998, math/9803017.

[4]  J. Ball,et al.  Zero-pole interpolation for matrix meromorphic functions on a compact Riemann surface and a matrix Fay trisecant identity , 1997, alg-geom/9712028.

[5]  S. I. Gelʹfand,et al.  Methods of Homological Algebra , 1996 .

[6]  C. Poor Fay’s trisecant formula and cross-ratios , 1992 .

[7]  John D. Fay Kernel functions, analytic torsion, and moduli spaces , 1992 .

[8]  Herbert Lange,et al.  Complex Abelian Varieties , 1992 .

[9]  D. Zagier Periods of modular forms and Jacobi theta functions , 1991 .

[10]  R. Gunning Some Identities for Abelian Integrals , 1986 .

[11]  J. M. Anderson,et al.  RIEMANN SURFACES (Graduate Texts in Mathematics, 71) , 1982 .

[12]  向井 茂 Duality between D(X) and D(X) with its application to Picard sheaves , 1982 .

[13]  D. Mumford Tata Lectures on Theta I , 1982 .

[14]  S. Mukai Duality between D(X) and with its application to picard sheaves , 1981, Nagoya Mathematical Journal.

[15]  André Weil,et al.  Elliptic Functions according to Eisenstein and Kronecker , 1976 .

[16]  John D. Fay Theta Functions on Riemann Surfaces , 1973 .

[17]  H. Piaggio Kernel Functions , 1955, Nature.

[18]  K. Hensel,et al.  Leopold Kronecker's Werke , 1895 .

[19]  G. Frobenius,et al.  Zur Theorie der elliptischen Functionen. , 2022 .