Maximum and antimaximum principles for a second order differential operator with variable coefficients of indefinite sign

New criteria for the existence of a maximum or antimaximum principle of a general second order operator with periodic conditions, as well as conditions for nonresonance, are provided and compared with the related literature.

[1]  Ziheng Zhang,et al.  Periodic solutions for damped differential equations with a weak repulsive singularity , 2009 .

[2]  Z. Opial,et al.  Sur les solutions périodiques des équations différentielles ordinaires , 1964 .

[3]  Alberto Cabada,et al.  On the sign of the Green's function associated to Hill's equation with an indefinite potential , 2008, Appl. Math. Comput..

[4]  Alberto Cabada,et al.  Maximum and anti-maximum principles for the general operator of second order with variable coefficients , 2003, Appl. Math. Comput..

[5]  Weigao Ge,et al.  Periodic solutions for a second order nonlinear functional differential equation , 2007, Appl. Math. Lett..

[6]  Ivan Kiguradze,et al.  On periodic solutions of n th order ordinary differential equations , 2000 .

[7]  Ke Chen,et al.  Applied Mathematics and Computation , 2022 .

[8]  I. T. Kiguradze,et al.  Boundary-value problems for systems of ordinary differential equations , 1988 .

[9]  P. Omari,et al.  Remarks on the lower and upper solutions method for second- and third-order periodic boundary value problems , 1992 .

[10]  A. Lomtatidze,et al.  Periodic solutions of nonautonomous ordinary differential equations , 2010 .

[11]  Pedro J. Torres,et al.  Applications of Schauder's fixed point theorem to singular differential equations , 2007 .

[12]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[13]  Meirong Zhang,et al.  A monotone iterative scheme for a nonlinear second order equation based on a generalized anti–maximum principle , 2003 .

[14]  P. Torres Existence and Stability of Periodic Solutions of a Duffing Equation by Using a New Maximum Principle , 2004 .

[15]  Pedro J. Torres,et al.  Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem , 2003 .

[16]  Yong Li,et al.  Periodic solutions for Duffing equations , 1995 .

[17]  H. Wang,et al.  Existence and Uniqueness of Periodic Solutions for Duffing Equations across Many Points of Resonance , 1994 .

[18]  Optimal Conditions for Maximum and Antimaximum Principles of the Periodic Solution Problem , 2010 .

[19]  Pedro J. Torres,et al.  Weak singularities may help periodic solutions to exist , 2007 .