Real-Time Reversible Iterative Arrays

Iterative arrays are one-dimensional arrays of interconnected interacting finite automata. The cell at the origin is equipped with a oneway read-only input tape. We investigate iterative arrays as acceptors for formal languages. In particular, we consider real-time devices which are reversible on the core of computation, i.e., from initial configuration to the configuration given by the time complexity. This property is called real-time reversibility. It is shown that real-time reversible iterative arrays can simulate restricted variants of stacks and queues. It turns out that real-time reversible iterative arrays are strictly weaker than realtime reversible cellular automata. On the other hand, a nonsemilinear language is accepted. We show that real-time reversibility itself is not even semidecidable, which extends the undecidability for cellular automata and contrasts the general case, where reversibility is decidable for one-dimensional devices. Moreover, we prove the non-semidecidability of several other properties. The closure under Boolean operations is also derived.

[1]  Kenichi Morita,et al.  Parallel Generation and Parsing of Array Languages Using Reversible Cellular Automata , 1992, ICPIA.

[2]  Tommaso Toffoli,et al.  Computation and Construction Universality of Reversible Cellular Automata , 1977, J. Comput. Syst. Sci..

[3]  Jean-Éric Pin,et al.  On Reversible Automata , 1992, LATIN.

[4]  Martin Kutrib,et al.  Iterative Arrays With Limited Nondeterministic Communication Cell , 2000, Words, Languages & Combinatorics.

[5]  Serafino Amoroso,et al.  Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures , 1972, J. Comput. Syst. Sci..

[6]  Kenichi Morita,et al.  A 1-Tape 2-Symbol Reversible Turing Machine , 1989 .

[7]  Katsunobu Imai,et al.  Firing Squad Synchronization Problem in Reversible Cellular Automata , 1996, Theor. Comput. Sci..

[8]  Oscar H. Ibarra,et al.  Some results concerning linear iterative (systolic) arrays , 1985, J. Parallel Distributed Comput..

[9]  Jarkko Kari,et al.  Reversibility and Surjectivity Problems of Cellular Automata , 1994, J. Comput. Syst. Sci..

[10]  Kenichi Morita,et al.  Reversible Simulation of One-Dimensional Irreversible Cellular Automata , 1995, Theor. Comput. Sci..

[11]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[12]  Katsunobu Imai,et al.  Constructible functions in cellular automata and their applications to hierarchy results , 2002, Theor. Comput. Sci..

[13]  Kenichi Morita,et al.  Computation-Universality of One-Dimensional One-Way Reversible Cellular Automata , 1992, Inf. Process. Lett..

[14]  Martin Kutrib,et al.  Some Relations Between Massively Parallel Arrays , 1997, Parallel Comput..

[15]  Martin Kutrib,et al.  Iterative Arrays with Small Time Bounds , 2000, MFCS.

[16]  Katsunobu Imai,et al.  Characterizing the Ability of Parallel Array Generators on Reversible Partitioned Cellular Automata , 1999, Int. J. Pattern Recognit. Artif. Intell..

[17]  Jarkko Kari,et al.  Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..

[18]  Dana Angluin,et al.  Inference of Reversible Languages , 1982, JACM.

[19]  Martin Kutrib,et al.  Fast reversible language recognition using cellular automata , 2007, Inf. Comput..

[20]  Alvy Ray Smith,et al.  Real-Time Language Recognition by One-Dimensional Cellular Automata , 1972, J. Comput. Syst. Sci..

[21]  Stephen N. Cole Real-Time Computation by n-Dimensional Iterative Arrays of Finite-State Machines , 1969, IEEE Trans. Computers.

[22]  Andreas Malcher Descriptional Complexity of Cellular Automata and Decidability Questions , 2001, DCFS.

[23]  Jarkko Kari,et al.  A Tight Linear Bound on the Neighborhood of Inverse Cellular Automata , 2005, ICALP.

[24]  Martin Kutrib Automata arrays and context-free languages , 2001, Where Mathematics, Computer Science, Linguistics and Biology Meet.

[25]  Andreas Malcher On the Descriptional Complexity of Iterative Arrays , 2004, IEICE Trans. Inf. Syst..

[26]  Patrick C. Fischer,et al.  Generation of Primes by a One-Dimensional Real-Time Iterative Array , 1965, JACM.

[27]  K. Morita,et al.  Computation universality of one-dimensional reversible (injective) cellular automata , 1989 .