Thermodynamic cost of computation, algorithmic complexity and the information metric

Algorithmic complexity is a measure of randomness. In contrast to Shannon's entropy it is defined without a recourse to probabilities; for a binary string s it is given by the size, in bits, of the shortest computer program with the output s. I show that algorithmic complexity sets limits on the thermodynamic cost of computations, casts a new light on the limitations of Maxwell's demon and can be used to define distance between binary strings.

[1]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[2]  William H. Press,et al.  Numerical recipes , 1990 .

[3]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..

[4]  Charles H. Bennett Demons, Engines and the Second Law , 1987 .

[5]  Ian Stewart The ultimate in undecidability , 1988, Nature.

[6]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[7]  Wojciech H. Zurek,et al.  Reversibility and stability of information processing systems , 1984 .

[8]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[9]  Gregory J. Chaitin,et al.  A recent technical report , 1974, SIGA.

[10]  Richard W. Hamming,et al.  Coding and Information Theory , 2018, Feynman Lectures on Computation.

[11]  Andrei N. Kolmogorov,et al.  Logical basis for information theory and probability theory , 1968, IEEE Trans. Inf. Theory.

[12]  S. Lloyd,et al.  Complexity as thermodynamic depth , 1988 .

[13]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[14]  Wojciech Hubert Zurek,et al.  Maxwell’s Demon, Szilard’s Engine and Quantum Measurements , 2003, quant-ph/0301076.

[15]  D. Hofstadter Gödel, Escher, Bach , 1979 .

[16]  Gregory J. Chaitin,et al.  Algorithmic Information Theory , 1987, IBM J. Res. Dev..

[17]  R. Landauer,et al.  The Fundamental Physical Limits of Computation. , 1985 .

[18]  G. Chaitin Randomness and Mathematical Proof , 1975 .

[19]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[20]  Gregory. J. Chaitin,et al.  Algorithmic information theory , 1987, Cambridge tracts in theoretical computer science.

[21]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.