Optimal Monotone Encodings

Moran, Naor and Segev have asked what is the minimal r= r(n, k) for which there exists an(n,k)-monotone encoding of length r,i.e., a monotone injective function from subsets of size up tokof {1, 2, …, n} to rbits.Monotone encodings are relevant to the study of tamper-proof datastructures and arise also in the design of broadcast schemes incertain communication networks. To answer this question, we develop a relaxation ofk-superimposed families, which we callα-fraction k-multi-user tracing((k, α)-FUT families). We show thatr(n, k) = θ(klog(n/k)) by proving tight asymptotic lower andupper bounds on the size of (k, α)-FUTfamilies and by constructing an (n,k)-monotoneencoding of length O(klog(n/k)). We also present an explicit construction of an (n,2)-monotone encoding of length 2logn+ O(1),which is optimal up to an additive constant.

[1]  Bálint Laczay,et al.  Multiple User Tracing Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[2]  Noga Alon,et al.  Tracing Many Users With Almost No Rate Penalty , 2007, IEEE Transactions on Information Theory.

[3]  Zoltán Füredi On r-Cover-free Families , 1996, J. Comb. Theory, Ser. A.

[4]  Enkatesan G Uruswami Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes , 2008 .

[5]  J. Oesterlé,et al.  Nouvelles approches du «théorème» de Fermat , 1988 .

[6]  Arkadii G. D'yachkov,et al.  A survey of superimposed code theory , 1983 .

[7]  Miklós Ruszinkó,et al.  On the Upper Bound of the Size of the R-Cover-Free Families , 1993, Proceedings. IEEE International Symposium on Information Theory.

[8]  Moni Naor,et al.  Deterministic History-Independent Strategies for Storing Information on Write-Once Memories , 2007, Theory Comput..

[9]  Miklós Csürös,et al.  Single-user tracing and disjointly superimposed codes , 2005, IEEE Transactions on Information Theory.

[10]  James B. Shearer,et al.  New Bounds for Union-free Families of Sets , 1998, Electron. J. Comb..

[11]  Noga Alon,et al.  Tracing a single user , 2006, Eur. J. Comb..

[12]  Bruce E. Hajek,et al.  Review of 'Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory' (Kushner, H.J.; 1984) , 1985, IEEE Transactions on Information Theory.

[13]  Noga Alon,et al.  Explicit construction of exponential sized families of k-independent sets , 1986, Discret. Math..

[14]  Avi Wigderson,et al.  Randomness conductors and constant-degree lossless expanders , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[15]  János Komlós,et al.  An asymptotically fast nonadaptive algorithm for conflict resolution in multiple-access channels , 1985, IEEE Trans. Inf. Theory.

[16]  P. Erdös,et al.  Families of finite sets in which no set is covered by the union ofr others , 1985 .