Scaling and decay in periodically driven scattering systems.

We investigate irregular scattering in a periodically driven Hamiltonian system of one degree of freedom. The potential is asymptotically attracting, so there exist parabolically escaping scattering orbits, i.e. orbits with asymptotic energy E(out)=0. The scattering functions (i.e. the asymptotic out-variables as functions of an asymptotic in-variable) show a characteristic algebraic scaling in the vicinity of these orbits. This behavior is explained by asymptotic properties of the interaction. As a consequence, the number N(Deltat) of temporarily bound particles decays algebraically with the delay time Deltat, although no KAM scenario can be found in phase space. On the other hand, we find the number N(n) of temporarily bound particles to decay exponentially with the number n of zeros of x(t).

[1]  A. Lichtenberg,et al.  Regular and Stochastic Motion , 1982 .

[2]  U. Smilansky,et al.  Ionization of H Rydberg atoms: Fractals and power-law decay. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[3]  E. Zienicke,et al.  Chaos in one-dimensional collision complexes , 1991 .

[4]  Christof Jung,et al.  Hamiltonian scattering chaos in a hydrodynamical system , 1992 .

[5]  B. Eckhardt Irregular scattering , 1988 .

[6]  C. Jung,et al.  Cantor set structures in the singularities of classical potential scattering , 1987 .

[7]  Kovács,et al.  Thermodynamics of irregular scattering. , 1990, Physical Review Letters.

[8]  U. Smilansky,et al.  A simple model for chaotic scattering: I. Classical theory , 1989 .

[9]  L. Wiesenfeld Chaotic scattering in a driven Coulomb potential: asymptotic behaviour , 1992 .

[10]  Grebogi,et al.  Critical exponent of chaotic transients in nonlinear dynamical systems. , 1986, Physical review letters.

[11]  Dima L. Shepelyansky,et al.  Hydrogen atom in monochromatic field: chaos and dynamical photonic localization , 1988 .

[12]  Grebogi,et al.  Routes to chaotic scattering. , 1989, Physical review letters.

[13]  M. V. Berry,et al.  Evolution of Wigner's phase-space density under a nonintegrable quantum map , 1981 .

[14]  Charles F. F. Karney Long-time correlations in the stochastic regime , 1983, nlin/0501023.

[15]  P. Grassberger,et al.  Universal scaling of long-time tails in Hamiltonian systems? , 1985 .

[16]  C. Jung,et al.  Chaotic scattering off the magnetic dipole , 1988 .

[17]  C. Jung Scattering Chaos in the Harmonically Driven Morse System , 1991 .

[18]  Ott,et al.  Markov-Tree model of intrinsic transport in Hamiltonian systems. , 1985, Physical review letters.

[19]  E. Ott,et al.  Algebraic escape in higher dimensional Hamiltonian systems , 1990 .

[20]  C. Jung,et al.  Classical cross section for chaotic potential scattering , 1989 .

[21]  Grebogi,et al.  Quantum manifestations of chaotic scattering. , 1992, Physical review letters.

[22]  Dima L. Shepelyansky,et al.  CORRELATION PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN SYSTEMS , 1984 .

[23]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[24]  Grebogi,et al.  Algebraic decay and phase-space metamorphoses in microwave ionization of hydrogen Rydberg atoms. , 1992, Physical review. A, Atomic, molecular, and optical physics.