Interactive procedure for multiobjective dynamic programming with the mixed ordered structure

The paper presents a multiobjective dynamic programming problem with the values of the criteria function in ordered structures. The first problem is a model with deterministic values; the second, one with triangular fuzzy numbers; and the third, one with discrete random variables with the k-th absolute moment finite. The fourth model is a product of the three models listed above. The aim of the paper is to present an interactive procedure which uses trade-offs and which allows to determine the final solution in the mixed ordered structure. The ordered structures and the proposed procedure are illustrated by numerical examples.

[1]  Pekka Korhonen,et al.  A Visual Interactive Method for Solving the Multiple-Criteria Problem , 1986 .

[2]  M. J. Sobel Ordinal Dynamic Programming , 1975 .

[3]  BenayounR.,et al.  Linear programming with multiple objective functions , 1971 .

[4]  Yacov Y. Haimes,et al.  MULTIOBJECTIVE DYNAMIC PROGRAMMING: THE STATE OF THE ART , 1989 .

[5]  L. G. Mitten Preference Order Dynamic Programming , 1974 .

[6]  R. Benayoun,et al.  Linear programming with multiple objective functions: Step method (stem) , 1971, Math. Program..

[7]  Sebastian Sitarz,et al.  Dynamic Discrete Programming with Partially Ordered Criteria Set , 2002 .

[8]  Maciej Nowak,et al.  Aspiration level approach in stochastic MCDM problems , 2007, Eur. J. Oper. Res..

[9]  Tadeusz Trzaskalik,et al.  Multiobjective analysis in dynamic environment , 1998 .

[10]  E. Steinberg,et al.  A Preference Order Dynamic Program for a Knapsack Problem with Stochastic Rewards , 1979 .

[11]  Mordechai I. Henig,et al.  The Principle of Optimality in Dynamic Programming with Returns in Partially Ordered Sets , 1985, Math. Oper. Res..

[12]  Tadeusz Trzaskalik,et al.  Interactive procedure for a multiobjective stochastic discrete dynamic problem , 2013, J. Glob. Optim..

[13]  Selin Özpeynirci,et al.  An interactive approach for multiple criteria selection problem , 2017, Comput. Oper. Res..

[14]  Kazimierz Zaras,et al.  Rough approximation of a preference relation by a multi-attribute dominance for deterministic, stochastic and fuzzy decision problems , 2004, Eur. J. Oper. Res..

[15]  Kaisa Miettinen,et al.  Interactive multiobjective optimization system WWW-NIMBUS on the Internet , 2000, Comput. Oper. Res..

[16]  Maciej Nowak,et al.  INSDECM - an interactive procedure for stochastic multicriteria decision problems , 2006, Eur. J. Oper. Res..

[17]  Maciej A. Nowak,et al.  Trade-Off Analysis in Discrete Decision Making Problems Under Risk , 2010 .

[18]  R. Bellman Dynamic programming. , 1957, Science.

[19]  Sebastian Sitarz,et al.  Discrete dynamic programming with outcomes in random variable structures , 2007, Eur. J. Oper. Res..