An Ensemble Learning Approach for Urban Land Use Mapping Based on Remote Sensing Imagery and Social Sensing Data

[1]  Frank Canters,et al.  Quantifying uncertainty in remote sensing-based urban land-use mapping , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[2]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[3]  Hui Xiong,et al.  Discovering Urban Functional Zones Using Latent Activity Trajectories , 2015, IEEE Transactions on Knowledge and Data Engineering.

[4]  Krista A. Ehinger,et al.  SUN Database: Exploring a Large Collection of Scene Categories , 2014, International Journal of Computer Vision.

[5]  Eva Pauditšová,et al.  Identification of interconnections between landscape pattern and urban dynamics—Case study Bratislava, Slovakia , 2014 .

[6]  Shihong Du,et al.  Hierarchical semantic cognition for urban functional zones with VHR satellite images and POI data , 2017 .

[7]  Yu Liu,et al.  A framework for mixed-use decomposition based on temporal activity signatures extracted from big geo-data , 2018, Int. J. Digit. Earth.

[8]  George Papandreou,et al.  Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation , 2018, ECCV.

[9]  Frank Canters,et al.  Mapping urban form and function at city block level using spatial metrics , 2017 .

[10]  Xingjian Liu,et al.  Automated identification and characterization of parcels (AICP) with OpenStreetMap and Points of Interest , 2013, ArXiv.

[11]  Hao Li,et al.  Mapping Dynamic Urban Land Use Patterns with Crowdsourced Geo-Tagged Social Media (Sina-Weibo) and Commercial Points of Interest Collections in Beijing, China , 2016 .

[12]  Bolei Zhou,et al.  Places: A 10 Million Image Database for Scene Recognition , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Bo Huang,et al.  Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery , 2018, Remote Sensing of Environment.

[14]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Xiao Xiang Zhu,et al.  Building Instance Classification Using Street View Images , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[16]  Xiaoping Liu,et al.  Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model , 2017, Int. J. Geogr. Inf. Sci..

[17]  Ricardo Muñoz,et al.  Land Use detection with cell phone data using topic models: Case Santiago, Chile , 2017, Comput. Environ. Urban Syst..

[18]  Shihong Du,et al.  A Linear Dirichlet Mixture Model for decomposing scenes: Application to analyzing urban functional zonings , 2015 .

[19]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Hanfa Xing,et al.  Integrating landscape metrics and socioeconomic features for urban functional region classification , 2018, Comput. Environ. Urban Syst..

[21]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[22]  Liang Cheng,et al.  Mapping Urban Areas Using a Combination of Remote Sensing and Geolocation Data , 2019, Remote. Sens..

[23]  Zhou Huang,et al.  A Novel Popular Tourist Attraction Discovering Approach Based on Geo-Tagged Social Media Big Data , 2017, ISPRS Int. J. Geo Inf..

[24]  Weidong Li,et al.  Building block level urban land-use information retrieval based on Google Street View images , 2017 .

[25]  Krzysztof Janowicz,et al.  Extracting urban functional regions from points of interest and human activities on location‐based social networks , 2017, Trans. GIS.

[26]  J. Rogan,et al.  Remote sensing technology for mapping and monitoring land-cover and land-use change , 2004 .

[27]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[28]  Wei Tu,et al.  Coupling mobile phone and social media data: a new approach to understanding urban functions and diurnal patterns , 2017, Int. J. Geogr. Inf. Sci..

[29]  T. Voorde,et al.  Mapping urban land cover from high spatial resolution hyperspectral data: An approach based on simultaneously unmixing similar pixels with jointly sparse spectral mixture analysis , 2017 .

[30]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Xin Pan,et al.  An object-based convolutional neural network (OCNN) for urban land use classification , 2018, Remote Sensing of Environment.

[32]  Wei Tu,et al.  Integrating Aerial and Street View Images for Urban Land Use Classification , 2018, Remote. Sens..

[33]  Xiaoping Liu,et al.  Delineating urban functional areas with building-level social media data: A dynamic time warping (DTW) distance based k-medoids method , 2017 .

[34]  Jianping Wu,et al.  An Extended Minimum Spanning Tree method for characterizing local urban patterns , 2018, Int. J. Geogr. Inf. Sci..

[35]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Xin Du,et al.  The Combined Use of Remote Sensing and Social Sensing Data in Fine-Grained Urban Land Use Mapping: A Case Study in Beijing, China , 2017, Remote. Sens..

[37]  Chaogui Kang,et al.  Social Sensing: A New Approach to Understanding Our Socioeconomic Environments , 2015 .

[38]  Liwei Zhang,et al.  An Integrated Framework Combining Multiple Human Activity Features for Land Use Classification , 2019, ISPRS Int. J. Geo Inf..

[39]  Xia Li,et al.  Understanding the spatial organization of urban functions based on co-location patterns mining: A comparative analysis for 25 Chinese cities , 2020 .

[40]  Peng Gong,et al.  Mapping Urban Land Use by Using Landsat Images and Open Social Data , 2016, Remote. Sens..

[41]  Yu Liu,et al.  Building a Spatially-Embedded Network of Tourism Hotspots From Geotagged Social Media Data , 2018, IEEE Access.

[42]  Jian Sun,et al.  Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition , 2015, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Zhou Huang,et al.  Perceiving Beijing’s “City Image” Across Different Groups Based on Geotagged Social Media Data , 2020, IEEE Access.

[44]  Xiaoping Liu,et al.  Classifying urban land use by integrating remote sensing and social media data , 2017, Int. J. Geogr. Inf. Sci..

[45]  Anthony Gar-On Yeh,et al.  Analyzing spatial restructuring of land use patterns in a fast growing region using remote sensing and GIS , 2004 .

[46]  Qingming Zhan,et al.  Urban land use extraction from Very High Resolution remote sensing imagery using a Bayesian network , 2016 .

[47]  Chenghu Zhou,et al.  A new insight into land use classification based on aggregated mobile phone data , 2013, Int. J. Geogr. Inf. Sci..

[48]  Vanessa Frías-Martínez,et al.  Spectral clustering for sensing urban land use using Twitter activity , 2014, Engineering applications of artificial intelligence.

[49]  Wenjie Wang,et al.  Parcel-based urban land use classification in megacity using airborne LiDAR, high resolution orthoimagery, and Google Street View , 2017, Comput. Environ. Urban Syst..