Multilevel Monte Carlo front-tracking for random scalar conservation laws

[1]  Svetlana Tokareva,et al.  Numerical Solution of Scalar Conservation Laws with Random Flux Functions , 2016, SIAM/ASA J. Uncertain. Quantification.

[2]  Jonas Sukys,et al.  Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions , 2012, J. Comput. Phys..

[3]  Siddhartha Mishra,et al.  Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..

[4]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[5]  H. Holden,et al.  Front Tracking for Hyperbolic Conservation Laws , 2002 .

[6]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[7]  E Weinan,et al.  Invariant measures for Burgers equation with stochastic forcing , 2000, math/0005306.

[8]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[9]  A. Bressan,et al.  L1 Stability Estimates for n×n Conservation Laws , 1999 .

[10]  A. Bressan,et al.  Uniqueness of Weak Solutions to Systems of Conservation Laws , 1997 .

[11]  H. Holden,et al.  Conservation laws with a random source , 1997 .

[12]  Jack Xin,et al.  Front Speed in the Burgers Equation with a Random Flux , 1997 .

[13]  Jack Sklansky,et al.  Finding the convex hull of a simple polygon , 1982, Pattern Recognit. Lett..

[14]  C. Dafermos Polygonal approximations of solutions of the initial value problem for a conservation law , 1972 .

[15]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[16]  Jonas Sukys,et al.  Multi-level Monte Carlo Finite Volume Methods for Uncertainty Quantification in Nonlinear Systems of Balance Laws , 2013, Uncertainty Quantification in Computational Fluid Dynamics.

[17]  K. Kadlec,et al.  Stochastic Evolution Equations , 2013 .

[18]  Long Chen FINITE VOLUME METHODS , 2011 .

[19]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .

[20]  Benoît Perthame,et al.  Kinetic formulation of conservation laws , 2002 .

[21]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[22]  Jack Xin,et al.  White noise perturbation of the viscous shock fronts of the Burgers equation , 1996 .

[23]  Bernt Øksendal,et al.  The Burgers equation with a noisy force and the stochastic heat equation , 1994 .

[24]  L. Evans Measure theory and fine properties of functions , 1992 .

[25]  L. Holden,et al.  A NUMERICAL METHOD FOR FIRST ORDER NONLINEAR SCALAR CONSERVATION LAWS IN ONE-DIMENSION , 1988 .

[26]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .