Multilevel Monte Carlo front-tracking for random scalar conservation laws
暂无分享,去创建一个
[1] Svetlana Tokareva,et al. Numerical Solution of Scalar Conservation Laws with Random Flux Functions , 2016, SIAM/ASA J. Uncertain. Quantification.
[2] Jonas Sukys,et al. Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions , 2012, J. Comput. Phys..
[3] Siddhartha Mishra,et al. Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..
[4] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[5] H. Holden,et al. Front Tracking for Hyperbolic Conservation Laws , 2002 .
[6] Stefan Heinrich,et al. Multilevel Monte Carlo Methods , 2001, LSSC.
[7] E Weinan,et al. Invariant measures for Burgers equation with stochastic forcing , 2000, math/0005306.
[8] C. Dafermos. Hyberbolic Conservation Laws in Continuum Physics , 2000 .
[9] A. Bressan,et al. L1 Stability Estimates for n×n Conservation Laws , 1999 .
[10] A. Bressan,et al. Uniqueness of Weak Solutions to Systems of Conservation Laws , 1997 .
[11] H. Holden,et al. Conservation laws with a random source , 1997 .
[12] Jack Xin,et al. Front Speed in the Burgers Equation with a Random Flux , 1997 .
[13] Jack Sklansky,et al. Finding the convex hull of a simple polygon , 1982, Pattern Recognit. Lett..
[14] C. Dafermos. Polygonal approximations of solutions of the initial value problem for a conservation law , 1972 .
[15] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[16] Jonas Sukys,et al. Multi-level Monte Carlo Finite Volume Methods for Uncertainty Quantification in Nonlinear Systems of Balance Laws , 2013, Uncertainty Quantification in Computational Fluid Dynamics.
[17] K. Kadlec,et al. Stochastic Evolution Equations , 2013 .
[18] Long Chen. FINITE VOLUME METHODS , 2011 .
[19] M. Giles. Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .
[20] Benoît Perthame,et al. Kinetic formulation of conservation laws , 2002 .
[21] A. Bressan. Hyperbolic Systems of Conservation Laws , 1999 .
[22] Jack Xin,et al. White noise perturbation of the viscous shock fronts of the Burgers equation , 1996 .
[23] Bernt Øksendal,et al. The Burgers equation with a noisy force and the stochastic heat equation , 1994 .
[24] L. Evans. Measure theory and fine properties of functions , 1992 .
[25] L. Holden,et al. A NUMERICAL METHOD FOR FIRST ORDER NONLINEAR SCALAR CONSERVATION LAWS IN ONE-DIMENSION , 1988 .
[26] E. Giusti. Minimal surfaces and functions of bounded variation , 1977 .