A quadratically convergent procedure for the calculation of stability points in finite element analysis

In this paper a new finite element formulation is given for the analysis of nonlinear stability problems. The introduction of extended systems opens the possibility to compute limit and bifurcation points directly. Here, the use of the directional derivative yields a quadratically convergent iteration scheme. The combination with arc-length and branch-switching procedures leads to a global algorithm for path-following.

[1]  John Argyris,et al.  Implantation of a nonlinear capability on a linear software system , 1987 .

[2]  P. Bergan,et al.  Solution techniques for non−linear finite element problems , 1978 .

[3]  C. Felippa Traversing Critical Points with Penalty Springs , 1987 .

[4]  A. Spence,et al.  THE COMPUTATION OF SYMMETRY-BREAKING BIFURCATION POINTS* , 1984 .

[5]  J. Abbott An e cient algorithm for the determination of certain bifurcation points , 1978 .

[6]  G. Moore,et al.  The Calculation of Turning Points of Nonlinear Equations , 1980 .

[7]  Peter Wriggers,et al.  Consistent linearization for path following methods in nonlinear FE analysis , 1986 .

[8]  Edward L. Wilson,et al.  Numerical methods in finite element analysis , 1976 .

[9]  R. Seydel Numerical computation of branch points in nonlinear equations , 1979 .

[10]  G. A. Thurston Continuation of Newton’s Method Through Bifurcation Points , 1969 .

[11]  H. Weinitschke On the calculation of limit and bifurcation points in stability problems of elastic shells , 1985 .

[12]  E. Riks The Application of Newton's Method to the Problem of Elastic Stability , 1972 .

[13]  H. Saunders Book Reviews : NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS K.-J. Bathe and E.L. Wilson Prentice-Hall, Inc, Englewood Cliffs, NJ , 1978 .

[14]  Hans D. Mittelmann,et al.  Numerical Methods for Bifurcation Problems — A Survey and Classification , 1980 .

[15]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[16]  E. Riks Some computational aspects of the stability analysis of nonlinear structures , 1984 .

[17]  Peter Wriggers,et al.  Finite Element Postbuckling Analyis of Shells with Nonlinear Contact Constraints , 1986 .

[18]  Heinrich Rothert,et al.  Snap-Through Buckling of Reticulated Space Trusses , 1981 .

[19]  A. Spence,et al.  The Numerical Calculation of Cusps, Bifurcation Points and Isola Formation Points in Two Parameter Problems , 1984 .

[20]  Ekkehard Ramm,et al.  Strategies for Tracing the Nonlinear Response Near Limit Points , 1981 .

[21]  B. Brendel,et al.  Nichtlineare Stabilitätsuntersuchungen mit der Methode der Finiten Elemente , 1982 .

[22]  Peter Wriggers,et al.  A simple method for the calculation of postcritical branches , 1988 .

[23]  J. Z. Zhu,et al.  The finite element method , 1977 .

[24]  U. Hindenlang,et al.  Natural description of large inelastic deformations for shells of arbitrary shape-application of trump element , 1980 .

[25]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[26]  H. Weber On the numerical approximation of secondary bifurcation problems , 1981 .

[27]  M. Papadrakakis Analysis Methods for Spatial Structures , 1987 .