The function-on-scalar LASSO with applications to longitudinal GWAS
暂无分享,去创建一个
[1] H. Müller,et al. Functional Modeling of Longitudinal Data , 2006 .
[2] Daniel Levy,et al. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective , 2014, The Lancet.
[3] Sara van de Geer,et al. Statistics for High-Dimensional Data: Methods, Theory and Applications , 2011 .
[4] Matthew Reimherr,et al. A FUNCTIONAL DATA ANALYSIS APPROACH FOR GENETIC ASSOCIATION STUDIES , 2014, 1404.7301.
[5] Gareth M. James,et al. Functional additive regression , 2015, 1510.04064.
[6] J Gertheiss,et al. Variable selection in generalized functional linear models , 2013, Stat.
[7] Heng Lian. SHRINKAGE ESTIMATION AND SELECTION FOR MULTIPLE FUNCTIONAL REGRESSION , 2011 .
[8] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[9] Roberto Imbuzeiro Oliveira,et al. The lower tail of random quadratic forms with applications to ordinary least squares , 2013, ArXiv.
[10] C. Gieger,et al. Genomewide association analysis of coronary artery disease. , 2007, The New England journal of medicine.
[11] Wolfgang Jank,et al. FUNCTIONAL RESPONSE ADDITIVE MODEL ESTIMATION WITH ONLINE VIRTUAL STOCK MARKETS , 2014, 1502.00818.
[12] Sudha Seshadri,et al. Framingham Heart Study 100K project: genome-wide associations for cardiovascular disease outcomes , 2007, BMC Medical Genetics.
[13] Philip T. Reiss,et al. The International Journal of Biostatistics Fast Function-on-Scalar Regression with Penalized Basis Expansions , 2011 .
[14] Hans-Georg Müller,et al. Functional Data Analysis , 2016 .
[15] Fang Yao,et al. Partially functional linear regression in high dimensions , 2016 .
[16] Jane-Ling Wang,et al. From sparse to dense functional data and beyond , 2016 .
[17] Daniela M. Witten,et al. An Introduction to Statistical Learning: with Applications in R , 2013 .
[18] R. D'Agostino,et al. A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study , 2007, BMC Medical Genetics.
[19] R. DeVore,et al. A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .
[20] T. Hsing,et al. Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data , 2010, 1211.2137.
[21] A. Qu,et al. Weak signal identification and inference in penalized model selection , 2016, 1611.04638.
[22] Runze Li,et al. MULTIVARIATE VARYING COEFFICIENT MODEL FOR FUNCTIONAL RESPONSES. , 2012, Annals of statistics.
[23] Aina Estarellas-Roca,et al. REVISTA ESPAÑOLA DE , 2016 .
[24] Jane-ling Wang,et al. Functional linear regression analysis for longitudinal data , 2005, math/0603132.
[25] Gareth M. James,et al. Functional linear regression that's interpretable , 2009, 0908.2918.
[26] P. Massart,et al. Adaptive estimation of a quadratic functional by model selection , 2000 .
[27] Scott F. Saccone,et al. Novel genes identified in a high-density genome wide association study for nicotine dependence. , 2007, Human molecular genetics.
[28] G. Abecasis,et al. A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants , 2007, Science.
[29] C. O’Donnell,et al. [Cardiovascular risk factors. Insights from Framingham Heart Study]. , 2008, Revista espanola de cardiologia.
[30] Piotr Kokoszka,et al. Testing for lack of dependence in the functional linear model , 2008 .
[31] Li Ping Yang,et al. Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data , 1998 .
[32] Piotr Kokoszka,et al. Inference for Functional Data with Applications , 2012 .
[33] Jianhua Z. Huang,et al. Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements , 2008, Journal of the American Statistical Association.
[34] Jie Wang,et al. Lasso screening rules via dual polytope projection , 2012, J. Mach. Learn. Res..
[35] Liugen Xue,et al. Variable selection for semiparametric varying coefficient partially linear errors-in-variables models , 2010, J. Multivar. Anal..
[36] S. Geer,et al. Oracle Inequalities and Optimal Inference under Group Sparsity , 2010, 1007.1771.
[37] Jianqing Fan,et al. Two‐step estimation of functional linear models with applications to longitudinal data , 1999 .
[38] D. Levy,et al. Contributions of the Framingham Heart Study to the Epidemiology of Coronary Heart Disease. , 2016, JAMA cardiology.
[39] R. Tibshirani. The Lasso Problem and Uniqueness , 2012, 1206.0313.
[40] Ing,et al. Functional Linear Regression That ’ s Interpretable , 2008 .
[41] R. Ogden,et al. Variable selection in function‐on‐scalar regression , 2016, Stat.
[42] P. Sarda,et al. SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .
[43] Sham M. Kakade,et al. A tail inequality for quadratic forms of subgaussian random vectors , 2011, ArXiv.
[44] Sadanori Konishi,et al. Variable selection for functional regression models via the L1 regularization , 2011, Comput. Stat. Data Anal..