Calculating Retinal Contrast from Scene Content: A Program

This paper describes a computer program for calculating the contrast image on the human retina from an array of scene luminances. We used achromatic transparency targets and measured test target's luminances with meters. We used the CIE standard Glare Spread Function (GSF) to calculate the array of retinal contrast. This paper describes the CIE standard, the calculation and the analysis techniques comparing the calculated retinal image with observer data. The paper also describes in detail the techniques of accurate measurements of HDR scenes, conversion of measurements to input data arrays, calculation of the retinal image, including open source MATLAB code, pseudocolor visualization of HDR images that exceed the range of standard displays, and comparison of observed sensations with retinal stimuli.

[1]  The point-spread function of the eye from 0° to 100° and the pattern electroretinogram , 1987, Documenta Ophthalmologica.

[2]  Alessandro Rizzi,et al.  Retinal HDR images: Intraocular glare and object size , 2008, CIC.

[3]  Wolfgang Heidrich,et al.  High dynamic range display systems , 2004, SIGGRAPH 2004.

[4]  John J. McCann,et al.  Retinex at 50: color theory and spatial algorithms, a review , 2017, J. Electronic Imaging.

[5]  T. J. T. P. Van Den Berg,et al.  Importance of pathological intraocular light scatter for visual disability , 1986, Documenta Ophthalmologica.

[6]  Alessandro Rizzi,et al.  Camera and visual veiling glare in HDR images , 2007 .

[7]  John J. McCann,et al.  Art, science, and appearance in HDR , 2007 .

[8]  T. J. T. P. Van Den Berg Relation between media disturbances and the visual field , 1987 .

[9]  Gustav Theodor Fechner,et al.  Elements of psychophysics , 1966 .

[10]  Alessandro Rizzi,et al.  Glare‐limited appearances in HDR images , 2007, CIC.

[11]  John J. McCann,et al.  Accurate Information vs. Looks Good: Scientific vs. Preferred Rendering , 2012, CGIV.

[12]  Leon Lagnado,et al.  The retina , 1999, Current Biology.

[13]  S. Hecht,et al.  ENERGY, QUANTA, AND VISION , 1942, The Journal of general physiology.

[14]  Alessandro Rizzi,et al.  Appearance of High-Dynamic Range Images in a Uniform Lightness Space , 2008, CGIV/MCS.

[15]  Michael F. Land,et al.  The Human Eye: Structure and Function , 1999, Nature Medicine.

[16]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[17]  Alessandro Rizzi,et al.  Chromaticity limits in color constancy calculations , 2013, Color Imaging Conference.

[18]  John J. McCann ColorChecker at the beach: dangers of sunburn and glare , 2014, Electronic Imaging.

[19]  Andrew C. Gallagher The Art and Science of HDR Imaging , 2012, J. Electronic Imaging.

[20]  L. Franssen,et al.  Straylight at the retina : scattered papers , 2007 .

[21]  Percy W. Cobb THE INFLUENCE OF ILLUMINATION OF THE EYE ON VISUAL ACUITY , 1911 .

[22]  Wolfgang Heidrich,et al.  High dynamic range display systems , 2004, ACM Trans. Graph..

[23]  T. J. T. P. Van Den Berg,et al.  On the relation between glare and straylight , 2004, Documenta Ophthalmologica.

[24]  T. J. van den Berg,et al.  Clinical assessment of intraocular stray light. , 1992, Applied optics.

[25]  J. McCann,et al.  Influence of intraocular scattered light on lightness-scaling experiments. , 1983, Journal of the Optical Society of America.

[26]  C. H. Graham,et al.  Nerve impulses from single receptors in the eye , 1932 .

[27]  J. Pokorny,et al.  Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.

[28]  J. Vos Disability Glare A State of The Art Report , 1984 .

[29]  Luuk Franssen,et al.  Ocular Media Clarity and Straylight , 2010 .

[30]  J. Maxwell,et al.  On the theory of compound colours, and the relations of the colours of the spectrum , 1993 .

[31]  J. J. Vos,et al.  Light profiles of the foveal image of a point source , 1976, Vision Research.