The severe cytokine release syndrome in phase I trials of CD19-CAR-T cell therapy: a systematic review

CD19 chimeric antigen receptor (CAR) T cell therapy has shown impressive results in treating acute lymphoblastic leukemia (B-ALL), chronic lymphoblastic leukemia (B-CLL), and B-cell non-Hodgkin lymphoma (B-NHL) over the past few years. Meanwhile, the cytokine release syndrome (CRS), which could be moderate or even life-threatening, has emerged as the most significant adverse effect in the clinical course of this novel targeting immunotherapy. In this systematic review, we analyzed the incidence of severe CRS in 19 clinical trials selected from studies published between 2010 and 2017. The pooled severe CRS proportion was 29.3% (95% confidence interval [CI] 12.3–49.1%) in B-ALL, 38.8% (95%CI 12.9–67.6%) in B-CLL, and 19.8% (95%CI 4.2–40.8%) in B-NHL. In the univariate meta regression analysis, the proliferation of CD19-CAR-T cell in vivo was correlated with the severe CRS. Specifically, total infusion cell dose contributed to the severe CRS occurring in B-ALL patients but not in B-CLL or B-NHL patients. Tumor burden was strongly associated with the severity of CRS in B-ALL. Besides, post-HSCT CD19 CAR-T cell infusion represented lower severe CRS incidence. Further investigations into the risk factors of CRS in B-CLL and B-NHL are needed.

[1]  C. June,et al.  Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells. , 2016, Immunity.

[2]  J. Friedberg,et al.  Lymphoma Remissions Caused by Anti-CD19 Chimeric Antigen Receptor T Cells Are Associated With High Serum Interleukin-15 Levels. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  Michel Sadelain,et al.  Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. , 2011, Blood.

[4]  Daniel Li,et al.  CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. , 2016, The Journal of clinical investigation.

[5]  T. Naoe,et al.  Target Antigen Density Governs the Efficacy of Anti–CD20-CD28-CD3 ζ Chimeric Antigen Receptor–Modified Effector CD8+ T Cells , 2015, The Journal of Immunology.

[6]  Christine E Brown,et al.  Phase 1 studies of central memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients with B-cell NHL. , 2016, Blood.

[7]  Qing He,et al.  Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia , 2014, Science Translational Medicine.

[8]  Katy Rezvani,et al.  Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. , 2016, The Journal of clinical investigation.

[9]  H. Zhang,et al.  Potent Anti-leukemia Activities of Chimeric Antigen Receptor–Modified T Cells against CD19 in Chinese Patients with Relapsed/Refractory Acute Lymphocytic Leukemia , 2016, Clinical Cancer Research.

[10]  Daniel Li,et al.  Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. , 2017, Blood.

[11]  Sadik H. Kassim,et al.  Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. , 2013, Blood.

[12]  Yan Zhang,et al.  Tolerance and efficacy of autologous or donor-derived T cells expressing CD19 chimeric antigen receptors in adult B-ALL with extramedullary leukemia , 2015, Oncoimmunology.

[13]  Sadik H. Kassim,et al.  Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[14]  Pamela A Shaw,et al.  Chimeric antigen receptor T cells for sustained remissions in leukemia. , 2014, The New England journal of medicine.

[15]  N. Bartlett,et al.  Phase 1 Results of ZUMA-1: A Multicenter Study of KTE-C19 Anti-CD19 CAR T Cell Therapy in Refractory Aggressive Lymphoma , 2017, Molecular therapy : the journal of the American Society of Gene Therapy.

[16]  David L. Porter,et al.  Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia , 2015, Science Translational Medicine.

[17]  Hao Liu,et al.  CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. , 2011, The Journal of clinical investigation.

[18]  D. Porter,et al.  Cytokine release syndrome with novel therapeutics for acute lymphoblastic leukemia. , 2016, Hematology. American Society of Hematology. Education Program.

[19]  C. Cruz,et al.  Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. , 2013, Blood.

[20]  S. Heimfeld,et al.  Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor–modified T cells , 2016, Science Translational Medicine.

[21]  W. Wilson,et al.  B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. , 2012, Blood.

[22]  S. Rosenberg,et al.  Allogeneic T Cells That Express an Anti-CD19 Chimeric Antigen Receptor Induce Remissions of B-Cell Malignancies That Progress After Allogeneic Hematopoietic Stem-Cell Transplantation Without Causing Graft-Versus-Host Disease. , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[23]  Seth M Steinberg,et al.  T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial , 2015, The Lancet.

[24]  C. Bonini,et al.  Clinical pharmacology of CAR-T cells: Linking cellular pharmacodynamics to pharmacokinetics and antitumor effects. , 2016, Biochimica et biophysica acta.

[25]  G. Wertheim,et al.  Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T-cell Therapy for Acute Lymphoblastic Leukemia. , 2016, Cancer discovery.

[26]  I. Riaz,et al.  Donor origin CAR T cells: graft versus malignancy effect without GVHD, a systematic review. , 2017, Immunotherapy.

[27]  J. Kochenderfer,et al.  Toxicities of chimeric antigen receptor T cells: recognition and management. , 2016, Blood.