Multiple Geometric Viewpoints of Mixed Mode Dynamics Associated with Pseudo-plateau Bursting

Pseudo-plateau bursting is a type of oscillatory waveform associated with mixed mode dynamics in slow/fast systems and commonly found in neural bursting models. In a recent model for the electrical activity and calcium signaling in a pituitary lactotroph, two types of pseudo-plateau bursts were discovered: one in which the calcium drives the bursts and another in which the calcium simply follows them. Multiple methods from dynamical systems theory have been used to understand the bursting. The classic 2-timescale approach treats the calcium concentration as a slowly varying parameter and considers a parametrized family of fast subsystems. A more novel and successful 2-timescale approach divides the system so that there is only one fast variable and shows that the bursting arises from canard dynamics. Both methods can be effective analytic tools, but there has been little justification for one approach over the other. In this work, we use the lactotroph model to demonstrate that the two analysis techniques...

[1]  R. Bertram,et al.  Topological and phenomenological classification of bursting oscillations. , 1995, Bulletin of mathematical biology.

[2]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[3]  H. Osinga,et al.  Understanding anomalous delays in a model of intracellular calcium dynamics. , 2010, Chaos.

[4]  H M Osinga,et al.  Dynamics of Plateau Bursting Depending on the Location of its Equilibrium , 2010, Journal of neuroendocrinology.

[5]  Vivien Kirk,et al.  Multiple Timescales, Mixed Mode Oscillations and Canards in Models of Intracellular Calcium Dynamics , 2011, J. Nonlinear Sci..

[6]  Horacio G. Rotstein,et al.  Introduction to focus issue: mixed mode oscillations: experiment, computation, and analysis. , 2008, Chaos.

[7]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[8]  Hana Zemkova,et al.  Biophysical basis of pituitary cell type-specific Ca2+ signaling–secretion coupling , 2005, Trends in Endocrinology & Metabolism.

[9]  Arthur Sherman,et al.  Resetting Behavior in a Model of Bursting in Secretory Pituitary Cells: Distinguishing Plateaus from Pseudo-Plateaus , 2008, Bulletin of mathematical biology.

[10]  P. Szmolyana,et al.  Relaxation oscillations in R 3 , 2004 .

[11]  John Guckenheimer,et al.  Singular Hopf Bifurcation in Systems with Two Slow Variables , 2008, SIAM J. Appl. Dyn. Syst..

[12]  Peter Szmolyan,et al.  Relaxation oscillations in R3 , 2004 .

[13]  S. H. Chandler,et al.  Outward currents influencing bursting dynamics in guinea pig trigeminal motoneurons. , 1999, Journal of neurophysiology.

[14]  Georgi S. Medvedev,et al.  Multimodal regimes in a compartmental model of the dopamine neuron , 2004 .

[15]  A. Y. Kolesov,et al.  Asymptotic Methods in Singularly Perturbed Systems , 1994 .

[16]  Richard Bertram,et al.  Low dose of dopamine may stimulate prolactin secretion by increasing fast potassium currents , 2007, Journal of Computational Neuroscience.

[17]  Irina Erchova,et al.  Rhythms of the brain: an examination of mixed mode oscillation approaches to the analysis of neurophysiological data. , 2008, Chaos.

[18]  Nancy Kopell,et al.  Mixed-Mode Oscillations in Three Time-Scale Systems: A Prototypical Example , 2008, SIAM J. Appl. Dyn. Syst..

[19]  Martin Wechselberger,et al.  Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..

[20]  Peter Szmolyan,et al.  Asymptotic expansions using blow-up , 2005 .

[21]  P. Szmolyan,et al.  Canards in R3 , 2001 .

[22]  E. J. Doedel,et al.  AUTO: a program for the automatic bifurcation analysis of autonomous systems , 1980 .

[23]  Peter Szmolyan,et al.  Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points - Fold and Canard Points in Two Dimensions , 2001, SIAM J. Math. Anal..

[24]  Arthur Sherman,et al.  Full system bifurcation analysis of endocrine bursting models. , 2010, Journal of theoretical biology.

[25]  M. Wechselberger À propos de canards (Apropos canards) , 2012 .

[26]  Richard Bertram,et al.  The relationship between two fast/slow analysis techniques for bursting oscillations. , 2012, Chaos.

[27]  Arthur Sherman,et al.  Mechanism of spontaneous and receptor-controlled electrical activity in pituitary somatotrophs: experiments and theory. , 2007, Journal of neurophysiology.

[28]  Richard Bertram,et al.  Mixed mode oscillations as a mechanism for pseudo-plateau bursting , 2010, Journal of Computational Neuroscience.

[29]  Richard Bertram,et al.  A-Type K+ Current Can Act as a Trigger for Bursting in the Absence of a Slow Variable , 2008, Neural Computation.

[30]  Jianzhong Su,et al.  Analysis of a Canard Mechanism by Which Excitatory Synaptic Coupling Can Synchronize Neurons at Low Firing Frequencies , 2004, SIAM J. Appl. Math..

[31]  Maurizio Taglialatela,et al.  Low expression of Kv7/M channels facilitates intrinsic and network bursting in the developing rat hippocampus , 2008, The Journal of physiology.

[32]  Horacio G. Rotstein,et al.  Canard Induced Mixed-Mode Oscillations in a Medial Entorhinal Cortex Layer II Stellate Cell Model , 2008, SIAM J. Appl. Dyn. Syst..

[33]  A B Robson,et al.  Analysis of a reduced model of corticotroph action potentials. , 1998, Journal of theoretical biology.

[34]  James P. Keener,et al.  Mathematical physiology , 1998 .

[35]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[36]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[37]  Richard Bertram,et al.  BIFURCATIONS OF CANARD-INDUCED MIXED MODE OSCILLATIONS IN A PITUITARY LACTOTROPH MODEL , 2012 .

[38]  Tasso J. Kaper,et al.  Geometric Desingularization of a Cusp Singularity in Slow–Fast Systems with Applications to Zeeman’s Examples , 2013 .

[39]  Bernd Krauskopf,et al.  The Geometry of Slow Manifolds near a Folded Node , 2008, SIAM J. Appl. Dyn. Syst..

[40]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.

[41]  Martin Wechselberger,et al.  Bifurcations of mixed-mode oscillations in a stellate cell model , 2009 .

[42]  Bernd Krauskopf,et al.  Numerical continuation of canard orbits in slow–fast dynamical systems , 2010 .

[43]  Hinke M. Osinga,et al.  The role of large-conductance Calcium-activated K+ (BK) channels in shaping bursting oscillations of a somatotroph cell model , 2010 .

[44]  M. Krupa,et al.  Local analysis near a folded saddle-node singularity , 2010 .

[45]  Horacio G. Rotstein,et al.  Mixed-mode oscillations in a three time-scale system of ODEs motivated by a neuronal model , 2010 .

[46]  Alla Borisyuk,et al.  The Dynamic Range of Bursting in a Model Respiratory Pacemaker Network , 2005, SIAM J. Appl. Dyn. Syst..

[47]  Martin Krupa,et al.  Mixed Mode Oscillations due to the Generalized Canard Phenomenon , 2006 .

[48]  Richard Bertram,et al.  The dynamics underlying pseudo-plateau bursting in a pituitary cell model , 2011, Journal of mathematical neuroscience.

[49]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[50]  John Rinzel,et al.  Bursting oscillations in an excitable membrane model , 1985 .

[51]  John Guckenheimer,et al.  Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..

[52]  J. Rubin,et al.  The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. , 2008, Chaos.

[53]  Richard Bertram,et al.  NEGATIVE CALCIUM FEEDBACK: THE ROAD FORM CHAY-KEIZER , 2005 .

[54]  J. Rinzel,et al.  The slow passage through a Hopf bifurcation: delay, memory effects, and resonance , 1989 .

[55]  S. Stojilkovic,et al.  Dependence of pituitary hormone secretion on the pattern of spontaneous voltage-gated calcium influx. Cell type-specific action potential secretion coupling. , 2001, The Journal of biological chemistry.

[56]  John Rinzel,et al.  A Formal Classification of Bursting Mechanisms in Excitable Systems , 1987 .

[57]  N. Kopell,et al.  Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. , 2008, Chaos.

[58]  S. Baer,et al.  Sungular hopf bifurcation to relaxation oscillations , 1986 .

[59]  Bernd Krauskopf,et al.  Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system. , 2008, Chaos.

[60]  Richard Bertram,et al.  From Plateau to Pseudo-Plateau Bursting: Making the Transition , 2011, Bulletin of mathematical biology.

[61]  John Guckenheimer,et al.  The singular limit of a Hopf bifurcation , 2012 .

[62]  Min Zhang,et al.  The Ca2+ dynamics of isolated mouse beta-cells and islets: implications for mathematical models. , 2003, Biophysical journal.