Sharp detection boundaries on testing dense subhypergraph

We study the problem of testing the existence of a dense subhypergraph. The null hypothesis corresponds to an ErdősRényi uniform random hypergraph and the alternative hypothesis corresponds to a uniform random hypergraph that contains a dense subhypergraph. We establish sharp detection boundaries in both scenarios: (1) the edge probabilities are known; (2) the edge probabilities are unknown. In both scenarios, sharp detection boundaries are characterized by the appropriate model parameters. Asymptotically powerful tests are provided when the model parameters fall in the detectable regions. Our results indicate that the detectable regions for general hypergraph models are dramatically different from their graph counterparts. MSC2020 subject classifications: Primary 62G10; secondary 05C80

[1]  Yuetian Luo,et al.  Open Problem: Average-Case Hardness of Hypergraphic Planted Clique Detection , 2020, COLT 2020.

[2]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..

[3]  Ambedkar Dukkipati,et al.  Consistency of spectral hypergraph partitioning under planted partition model , 2015, 1505.01582.

[4]  Dong Xia,et al.  Community Detection for Hypergraph Networks via Regularized Tensor Power Iteration , 2019 .

[5]  Jiashun Jin,et al.  Optimal adaptivity of signed-polygon statistics for network testing , 2019, The Annals of Statistics.

[6]  Bernhard Schölkopf,et al.  Learning with Hypergraphs: Clustering, Classification, and Embedding , 2006, NIPS.

[7]  Michel X. Goemans,et al.  Community detection in hypergraphs, spiked tensor models, and Sum-of-Squares , 2017, 2017 International Conference on Sampling Theory and Applications (SampTA).

[8]  Mingao Yuan,et al.  Test dense subgraphs in sparse uniform hypergraph , 2020 .

[9]  I-Hsiang Wang,et al.  On the fundamental statistical limit of community detection in random hypergraphs , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[10]  Kangwook Lee,et al.  Community Recovery in Hypergraphs , 2017, IEEE Transactions on Information Theory.

[11]  Will Perkins,et al.  Spectral thresholds in the bipartite stochastic block model , 2015, COLT.

[12]  Marcello Pelillo,et al.  A Game-Theoretic Approach to Hypergraph Clustering , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Sebastian Nowozin,et al.  Higher-Order Correlation Clustering for Image Segmentation , 2011, NIPS.

[14]  Michael Dinitz,et al.  The Densest k-Subhypergraph Problem , 2016, APPROX-RANDOM.

[15]  Chao Gao,et al.  Testing Network Structure Using Relations Between Small Subgraph Probabilities , 2017, ArXiv.

[16]  Kangwook Lee,et al.  Hypergraph Spectral Clustering in the Weighted Stochastic Block Model , 2018, IEEE Journal of Selected Topics in Signal Processing.

[17]  Marianna Bolla,et al.  Spectra, Euclidean representations and clusterings of hypergraphs , 1993, Discret. Math..

[18]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[19]  B. Bollobás,et al.  Cliques in random graphs , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  Ambedkar Dukkipati,et al.  Consistency of Spectral Partitioning of Uniform Hypergraphs under Planted Partition Model , 2014, NIPS.

[21]  Florent Krzakala,et al.  Spectral detection on sparse hypergraphs , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[22]  Shuicheng Yan,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Dense Subgraph Partition of Positive Hypergraphs , 2022 .

[23]  Annie Qu,et al.  Tensors in Statistics , 2021 .

[24]  Xing Peng The Ramsey number of generalized loose paths in hypergraphs , 2016, Discret. Math..

[25]  Yuetian Luo,et al.  Tensor Clustering with Planted Structures: Statistical Optimality and Computational Limits , 2020, The Annals of Statistics.

[26]  Marcello Pelillo,et al.  New Bounds on the Clique Number of Graphs Based on Spectral Hypergraph Theory , 2009, LION.

[27]  E. Arias-Castro,et al.  Community Detection in Sparse Random Networks , 2013, 1308.2955.

[28]  P. Rigollet,et al.  Optimal detection of sparse principal components in high dimension , 2012, 1202.5070.

[29]  E. Arias-Castro,et al.  Community detection in dense random networks , 2014 .

[30]  Alexandre d'Aspremont,et al.  Convex Relaxations for Subset Selection , 2010, ArXiv.

[31]  Yosi Keller,et al.  Efficient High Order Matching , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Yu. I. Ingster,et al.  Detection of a sparse submatrix of a high-dimensional noisy matrix , 2011, 1109.0898.

[33]  Juan Alberto Rodriguez Velazquez,et al.  Laplacian eigenvalues and partition problems in hypergraphs , 2004 .

[34]  T.-H. Hubert Chan,et al.  Maintaining Densest Subsets Efficiently in Evolving Hypergraphs , 2017, CIKM.

[35]  Zuofeng Shang,et al.  Testing Community Structures for Hypergraphs , 2018, 1810.04617.