Computational battery dynamics (CBD)—electrochemical/thermal coupled modeling and multi-scale modeling

This paper reviews the development of first-principles based mathematical models for batteries developed on a framework parallel to computation fluid dynamics (CFD), herein termed computational battery dynamics (CBD). This general-purpose framework makes use of the similarity in the equations governing different battery systems, and has resulted in the development of robust models in a relatively short time. Here we review this framework, in the context of applications to the coupled modeling of the thermal and electrochemical behavior of cells, and to the modeling at three different scales, namely pore-level, cell-level and stack-level. The similarity and differences of our approach with other research groups are exemplified. Significant results from each of these advanced applications of modeling are highlighted with emphasis on the insights that can be gained from a first-principles model. In addition, we also demonstrate the usefulness of a combined experimental-modeling approach in describing cells. The models reviewed here are expected to be useful in predicting the behavior of advanced batteries used in electric vehicles (EVs) and hybrid electric vehicles (HEVs).

[1]  Thomas Stanford,et al.  Linear sweep voltammetry in flooded porous electrodes at low sweep rates , 1998 .

[2]  James W. Evans,et al.  Thermal Analysis of Lithium‐Ion Batteries , 1996 .

[3]  M. Verbrugge,et al.  Temperature and Current Distribution in Thin‐Film Batteries , 1999 .

[4]  Bor Yann Liaw,et al.  Micro‐Macroscopic Coupled Modeling of Batteries and Fuel Cells II. Application to Nickel‐Cadmium and Nickel‐Metal Hydride Cells , 1998 .

[5]  J. Newman,et al.  Theoretical Analysis of Current Distribution in Porous Electrodes , 1962 .

[6]  Paul Timmerman,et al.  Effect of Proton Diffusion, Electron Conductivity, and Charge‐Transfer Resistance on Nickel Hydroxide Discharge Curves , 1994 .

[7]  John W. Weidner,et al.  Thermodynamic considerations of the reversible potential for the nickel electrode , 1998 .

[8]  John Newman,et al.  Analysis of Porous Electrodes with Sparingly Soluble Reactants , 1971 .

[9]  Chaoyang Wang,et al.  Thermal‐Electrochemical Modeling of Battery Systems , 2000 .

[10]  Chaoyang Wang,et al.  Numerical Modeling of Coupled Electrochemical and Transport Processes in Lead‐Acid Batteries , 1997 .

[11]  J. Newman,et al.  Thermal modeling of the lithium/polymer battery. II: Temperature profiles in a cell stack , 1995 .

[12]  Thomas W. Chapman,et al.  RESTRICTED DIFFUSION IN BINARY SOLUTIONS , 1973 .

[13]  Ralph E. White,et al.  A Multiphase Mathematical Model of a Nickel/Hydrogen Cell , 1996 .

[14]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  Andrew S. Viner,et al.  The Impedance of a Tubular Electrode A Model for a Porous Electrode , 1990 .

[17]  Ralph E. White,et al.  Mathematical Modeling of a Nickel‐Cadmium Cell: Proton Diffusion in the Nickel Electrode , 1995 .

[18]  Chia-Jung Hsu Numerical Heat Transfer and Fluid Flow , 1981 .

[19]  Massoud Kaviany,et al.  Direct simulation vs volume-averaged treatment of adiabatic, premixed flame in a porous medium , 1994 .

[20]  Ralph E. White,et al.  Theoretical Analysis of the Discharge Performance of a NiOOH / H 2 Cell , 1994 .

[21]  Chao-Yang Wang,et al.  Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells , 2000 .

[22]  Ralph E. White,et al.  Mathematical modeling of a nickel/hydrogen cell , 1996 .

[23]  Uziel Landau,et al.  Effect of Sinter Fracture and Ohmic Resistance on Capacity Retention in the Nickel Oxide Electrode , 1991 .

[24]  John Newman,et al.  Mass Transfer in Concentrated Binary Electrolytes , 1965 .

[25]  Ralph E. White,et al.  A Nonisothermal Nickel‐Hydrogen Cell Model , 1998 .

[26]  M. N. Özişik Boundary value problems of heat conduction , 1989 .

[27]  J. R. Selman,et al.  Entropy Changes Due to Structural Transformation in the Graphite Anode and Phase Change of the LiCoO2 Cathode , 2000 .

[28]  Edwin D. Mares,et al.  On S , 1994, Stud Logica.

[29]  Chaoyang Wang,et al.  Micro‐Macroscopic Coupled Modeling of Batteries and Fuel Cells I. Model Development , 1998 .

[30]  R. Spotnitz,et al.  A Mathematical Model for Intercalation Electrode Behavior I. Effect of Particle‐Size Distribution on Discharge Capacity , 1998 .

[31]  Robert M. Darling,et al.  Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes , 1997 .

[32]  J. Newman,et al.  Modeling of Nickel/Metal Hydride Batteries , 1997 .

[33]  Ralph E. White,et al.  Governing Equations for Transport in Porous Electrodes , 1997 .

[34]  F. A. Posey Methods for the Calculation of Polarization in Porous Electrodes , 1964 .

[35]  John Newman,et al.  Thermoelectric effects in electrochemical systems , 1995 .

[36]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[37]  Ralph E. White,et al.  Influence of Some Design Variables on the Thermal Behavior of a Lithium‐Ion Cell , 1999 .

[38]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[39]  N. A. Godshall,et al.  Determination of the Thermoneutral Potential of Li / SOCl2 Cells , 1984 .

[40]  Ganesan Nagasubramanian,et al.  Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow , 2000 .

[41]  J. C. Slattery,et al.  Momentum, Energy and Mass Transfer in Continua , 1976 .