A de Haas-van Alphen study of niobium: Fermi surface, cyclotron effective masses, and magnetic breakdown effects

[1]  D. Koelling,et al.  Self-consistent relativistic APW calculation of the electronic structure of niobium with a non-muffin-tin potential , 1977 .

[2]  D. Papaconstantopoulos,et al.  Effect of self-consistency and exchange on the electronic structure of the transition metals, V, Nb, and Ta. [X. cap alpha. exchange approximation, electron-phonon mass enhancement factor anisotropy] , 1977 .

[3]  D. Koelling,et al.  Effect of non-muffin-tin terms on the electronic structure of transition metals: Niobium , 1976 .

[4]  D. Papaconstantopoulos,et al.  On calculating the electron-phonon mass enhancement lambda for compounds , 1976 .

[5]  R. Dynes,et al.  Transition temperature of strong-coupled superconductors reanalyzed , 1975 .

[6]  Y. Kubo,et al.  Angular Distribution of Positron Annihilation Radiation in Vanadium and Niobium–Theory , 1975 .

[7]  L. R. Windmiller,et al.  Parametrization of transition-metal Fermi-surface data , 1975 .

[8]  O. V. Lounasmaa,et al.  Experimental Principles and Methods Below 1K , 1974 .

[9]  D. Papaconstantopoulos,et al.  Electron--phonon interaction and superconductivity in transition metals and transition-metal carbides , 1974 .

[10]  G. M. Stocks,et al.  Non-muffin-tin effects in the 4d transition metals Rb, Nb, and Pd , 1974 .

[11]  J. L. Stanford,et al.  Determination of the Fermi surface of molybdenum using the de Haas--van Alphen effect , 1973 .

[12]  D. Papaconstantopoulos,et al.  Self-consistent band structure of niobium at normal and reduced lattice spacings , 1973 .

[13]  B. L. Gyorffy,et al.  Electron--phonon interactions, d resonances, and superconductivity in transition metals , 1972 .

[14]  R. Meyerhoff Preparation and Electrical Resistivity of Ultrahigh Purity Niobium , 1971 .

[15]  R. Stark,et al.  Quantum Interference of Electron Waves in a Normal Metal , 1971 .

[16]  M. Springford,et al.  The Fermi surface in niobium , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  J. H. Condon,et al.  Experimental Study of the Fermi Surfaces of Niobium and Tantalum , 1970 .

[18]  M. R. Halse The Fermi surfaces of the noble metals , 1969, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[19]  L. R. Windmiller,et al.  Techniques and Instrumentation for Measuring the de Haas‐van Alphen Effect in Metals , 1968 .

[20]  L. R. Windmiller,et al.  Theory and technology for measuring the de haas-van alphen type spectra in metal* , 1968 .

[21]  W. L. Mcmillan TRANSITION TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS. , 1968 .

[22]  D. K. Finnemore,et al.  Superconducting Properties of High-Purity Niobium , 1966 .

[23]  F. M. Mueller New Inversion Scheme for Obtaining Fermi-Surface Radii from de Haas-van Alphen Areas , 1966 .

[24]  H. Stachowiak,et al.  Theory of the de Haas-van Alphen Effect in a System of Coupled Orbits. Application to Magnesium , 1966 .

[25]  L. Mattheiss FERMI SURFACE IN TUNGSTEN , 1965 .

[26]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[27]  J. N. Butler,et al.  Hydrogen Evolution at a Solid Indium Electrode , 1965 .

[28]  D. Shoenberg,et al.  The de Haas–van Alphen effect in alkali metals , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  D. Roaf The Fermi surfaces of copper, silver and gold. II. Calculation of the Fermi surfaces , 1962, Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences.

[30]  A. C. Thorsen,et al.  DE HAAS-VAN ALPHEN EFFECT IN RHENIUM, NIOBIUM, AND TANTALUM , 1961 .

[31]  S. Sydoriak,et al.  THERMOMOLECULAR PRESSURE RATIOS FOR He$sup 3$ AND He$sup 4$ , 1956 .

[32]  W. Kohn,et al.  Solution of the Schrödinger Equation in Periodic Lattices with an Application to Metallic Lithium , 1954 .

[33]  J. Korringa,et al.  On the calculation of the energy of a Bloch wave in a metal , 1947 .

[34]  John C. Slater,et al.  Wave Functions in a Periodic Potential , 1937 .

[35]  V. Novotny,et al.  Single superconducting energy gap in pure niobium , 1975 .

[36]  R. Stark,et al.  Interfering electron quantum states in ultrapure magnesium , 1974 .

[37]  B. L. Gyorffy,et al.  A simple theory of the electron-phonon mass enhancement in transition metals , 1973 .

[38]  L. R. Windmiller,et al.  Inversion of Fermi-Surface Data Using Partial-Wave Phase Shifts and Their Derivatives: An Application to the Noble Metals , 1972 .

[39]  R. N. Euwema PLANE-WAVE--GAUSSIAN ENERGY-BAND STUDY OF Nb. , 1971 .

[40]  L. R. Windmiller,et al.  Measurement and inversion of de Haas-van alphen data in gold , 1971 .

[41]  L. Mattheiss ELECTRONIC STRUCTURE OF NIOBIUM AND TANTALUM. , 1970 .

[42]  W. Reed,et al.  HIGH-FIELD GALVANOMAGNETIC PROPERTIES OF NIOBIUM. , 1968 .

[43]  R. A. Deegan,et al.  MODIFICATIONS TO THE ORTHOGONALIZED-PLANE-WAVE METHOD FOR USE IN TRANSITION METALS: ELECTRONIC BAND STRUCTURE OF NIOBIUM. , 1967 .

[44]  W. Reed,et al.  HIGH-FIELD GALVANOMAGNETIC PROPERTIES OF NIOBIUM AND TANTALUM. , 1967 .