A de Haas-van Alphen study of niobium: Fermi surface, cyclotron effective masses, and magnetic breakdown effects
暂无分享,去创建一个
[1] D. Koelling,et al. Self-consistent relativistic APW calculation of the electronic structure of niobium with a non-muffin-tin potential , 1977 .
[2] D. Papaconstantopoulos,et al. Effect of self-consistency and exchange on the electronic structure of the transition metals, V, Nb, and Ta. [X. cap alpha. exchange approximation, electron-phonon mass enhancement factor anisotropy] , 1977 .
[3] D. Koelling,et al. Effect of non-muffin-tin terms on the electronic structure of transition metals: Niobium , 1976 .
[4] D. Papaconstantopoulos,et al. On calculating the electron-phonon mass enhancement lambda for compounds , 1976 .
[5] R. Dynes,et al. Transition temperature of strong-coupled superconductors reanalyzed , 1975 .
[6] Y. Kubo,et al. Angular Distribution of Positron Annihilation Radiation in Vanadium and Niobium–Theory , 1975 .
[7] L. R. Windmiller,et al. Parametrization of transition-metal Fermi-surface data , 1975 .
[8] O. V. Lounasmaa,et al. Experimental Principles and Methods Below 1K , 1974 .
[9] D. Papaconstantopoulos,et al. Electron--phonon interaction and superconductivity in transition metals and transition-metal carbides , 1974 .
[10] G. M. Stocks,et al. Non-muffin-tin effects in the 4d transition metals Rb, Nb, and Pd , 1974 .
[11] J. L. Stanford,et al. Determination of the Fermi surface of molybdenum using the de Haas--van Alphen effect , 1973 .
[12] D. Papaconstantopoulos,et al. Self-consistent band structure of niobium at normal and reduced lattice spacings , 1973 .
[13] B. L. Gyorffy,et al. Electron--phonon interactions, d resonances, and superconductivity in transition metals , 1972 .
[14] R. Meyerhoff. Preparation and Electrical Resistivity of Ultrahigh Purity Niobium , 1971 .
[15] R. Stark,et al. Quantum Interference of Electron Waves in a Normal Metal , 1971 .
[16] M. Springford,et al. The Fermi surface in niobium , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[17] J. H. Condon,et al. Experimental Study of the Fermi Surfaces of Niobium and Tantalum , 1970 .
[18] M. R. Halse. The Fermi surfaces of the noble metals , 1969, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[19] L. R. Windmiller,et al. Techniques and Instrumentation for Measuring the de Haas‐van Alphen Effect in Metals , 1968 .
[20] L. R. Windmiller,et al. Theory and technology for measuring the de haas-van alphen type spectra in metal* , 1968 .
[21] W. L. Mcmillan. TRANSITION TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS. , 1968 .
[22] D. K. Finnemore,et al. Superconducting Properties of High-Purity Niobium , 1966 .
[23] F. M. Mueller. New Inversion Scheme for Obtaining Fermi-Surface Radii from de Haas-van Alphen Areas , 1966 .
[24] H. Stachowiak,et al. Theory of the de Haas-van Alphen Effect in a System of Coupled Orbits. Application to Magnesium , 1966 .
[25] L. Mattheiss. FERMI SURFACE IN TUNGSTEN , 1965 .
[26] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[27] J. N. Butler,et al. Hydrogen Evolution at a Solid Indium Electrode , 1965 .
[28] D. Shoenberg,et al. The de Haas–van Alphen effect in alkali metals , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[29] D. Roaf. The Fermi surfaces of copper, silver and gold. II. Calculation of the Fermi surfaces , 1962, Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences.
[30] A. C. Thorsen,et al. DE HAAS-VAN ALPHEN EFFECT IN RHENIUM, NIOBIUM, AND TANTALUM , 1961 .
[31] S. Sydoriak,et al. THERMOMOLECULAR PRESSURE RATIOS FOR He$sup 3$ AND He$sup 4$ , 1956 .
[32] W. Kohn,et al. Solution of the Schrödinger Equation in Periodic Lattices with an Application to Metallic Lithium , 1954 .
[33] J. Korringa,et al. On the calculation of the energy of a Bloch wave in a metal , 1947 .
[34] John C. Slater,et al. Wave Functions in a Periodic Potential , 1937 .
[35] V. Novotny,et al. Single superconducting energy gap in pure niobium , 1975 .
[36] R. Stark,et al. Interfering electron quantum states in ultrapure magnesium , 1974 .
[37] B. L. Gyorffy,et al. A simple theory of the electron-phonon mass enhancement in transition metals , 1973 .
[38] L. R. Windmiller,et al. Inversion of Fermi-Surface Data Using Partial-Wave Phase Shifts and Their Derivatives: An Application to the Noble Metals , 1972 .
[39] R. N. Euwema. PLANE-WAVE--GAUSSIAN ENERGY-BAND STUDY OF Nb. , 1971 .
[40] L. R. Windmiller,et al. Measurement and inversion of de Haas-van alphen data in gold , 1971 .
[41] L. Mattheiss. ELECTRONIC STRUCTURE OF NIOBIUM AND TANTALUM. , 1970 .
[42] W. Reed,et al. HIGH-FIELD GALVANOMAGNETIC PROPERTIES OF NIOBIUM. , 1968 .
[43] R. A. Deegan,et al. MODIFICATIONS TO THE ORTHOGONALIZED-PLANE-WAVE METHOD FOR USE IN TRANSITION METALS: ELECTRONIC BAND STRUCTURE OF NIOBIUM. , 1967 .
[44] W. Reed,et al. HIGH-FIELD GALVANOMAGNETIC PROPERTIES OF NIOBIUM AND TANTALUM. , 1967 .