An ammonia-water mixture (AWM) turbine system is proposed in the paper. The authors call this Waseda ammonia-water Mixture Turbine System (W-MTS). The paper presents some results of the investigation for design of a bottoming cycle that is supplied steam as heat source. The results of the cycle simulation show that the W-MTS is superior to the other simple Kalina cycles (KCS1 and KCS34) to pressurized hot water and steam as a latent and a sensible heat source at a temperature of 160 C. The main components of the W-MTS are a heat recovery vapor generator, two condensers, an AWM turbine and two separators. The W-MTS features two simple Kalina cycles, KCS-1 and KCS-34. The W-MTS behaves like KCS-1 at low ammonia mass fraction region, and like KCS-34 at high ammonia mass fraction region. The W-MTS shows the higher output power rather than the two simple Kalina cycles at all over the ammonia mass fraction. The W-MTS is expected to be effective with the heat recovery of two preheaters in a AWM-vapor generation not only to sensible heat sources, such as exhaust gas that comes from gas turbine, hot water from a waste heat recovery system, etc., but also latent heatmore » source e.g. steam. The results of the simulation show that the ammonia mass fraction at the inlet of the heat recovery vapor generator, turbine inlet pressure and temperature in the separator are the key parameters for optimizing the operating conditions of the cycles. In the temperature rage between 120 C and 200 C, the W-MTS generates more power rather than two simple Kaline cycles.« less