The box algebra = Petri nets + process expressions

The paper describes a Petri net as well as a structural operational semantics for an algebra of process expressions. It specifically addresses this problem for the box algebra, a model of concurrent computation which combines Petri nets and standard process algebras. The main result is that it is possible to obtain a framework where process expressions can be given two, entirely consistent, kinds of semantics: one based on Petri nets, the other on SOS rules. This consistency can also be extended to a partial order semantics.

[1]  Maciej Koutny,et al.  Operational and Denotational Semantics for the Box Algebra , 1999, Theor. Comput. Sci..

[2]  Rita Loogen,et al.  Modelling nondeterministic concurrent processes with event structures , 1991, Fundam. Informaticae.

[3]  Ursula Goltz,et al.  Refinement of Actions in Causality Based Models , 1990, REX Workshop.

[4]  Raymond R. Devillers,et al.  The box calculus: a new causal algebra with multi-label communication , 1992, Advances in Petri Nets: The DEMON Project.

[5]  Ursula Goltz On Representing CCS Programs by Finite Petri Nets , 1988, MFCS.

[6]  Rob J. van Glabbeek,et al.  Petri Net Models for Algebraic Theories of Concurrency , 1987, PARLE.

[7]  Maciej Koutny,et al.  Petri Nets, Process Algebras and Concurrent Programming Languages , 1996, Petri Nets.

[8]  Maciej Koutny,et al.  Petri Net Algebra , 2001, Monographs in Theoretical Computer Science An EATCS Series.

[9]  Raymond R. Devillers S-invariant analysis of general recursive Petri boxes , 1995 .

[10]  Ernst-Rüdiger Olderog,et al.  Nets, terms and formulas , 1991 .

[11]  Raymond R. Devillers,et al.  Sequential and Concurrent Behaviour in Petri Net Theory , 1987, Theor. Comput. Sci..

[12]  Dirk Taubner,et al.  Finite Representations of CCS and TCSP Programs by Automata and Petri Nets , 1989, Lecture Notes in Computer Science.

[13]  Raymond R. Devillers Maximality preservation and the ST-idea for action refinements , 1992, Advances in Petri Nets: The DEMON Project.

[14]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[15]  Roberto Gorrieri,et al.  On the Implementation of Concurrent Calculi in Net Calculi: Two Case Studies , 1995, Theor. Comput. Sci..

[16]  Maciej Koutny,et al.  An Axiomatisation of Duplication Equivalence in the Petri Box Calculus , 1998, ICATPN.

[17]  Vadim E. Kotov,et al.  An Algebra for Parallelism Based on Petri Nets , 1978, MFCS.

[18]  Ugo Montanari,et al.  Combining CCS and Petri Nets Via Structural Axioms , 1994, Fundam. Informaticae.

[19]  Walter Volger Bisimulation and action refinement , 1991 .

[20]  Maciej Koutny,et al.  The Box Algebra - A Model of Nets and Process Expressions , 1999, ICATPN.

[21]  Wolfgang Reisig,et al.  Petri Nets , 1985, EATCS Monographs on Theoretical Computer Science.

[22]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[23]  Robert Valette,et al.  Analysis of Petri Nets by Stepwise Refinements , 1979, J. Comput. Syst. Sci..

[24]  Raymond R. Devillers,et al.  General Refinement and Recursion Operators for the Petri Box Calculus , 1993, STACS.

[25]  Ilaria Castellani,et al.  Flow Models of Distributed Computations: Three Equivalent Semantics for CCS , 1994, Inf. Comput..

[26]  Maciej Koutny,et al.  Recursion and Petri nets , 2001, Acta Informatica.

[27]  Ryszard Janicki,et al.  Specification and Analysis of Concurrent Systems , 1992, EATCS Monographs in Theoretical Computer Science.

[28]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.