Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques

The concept of nonlinear normal modes (NNMs) is discussed in the present paper and its companion, Part I. One reason of the still limited use of NNMs in structural dynamics is that their computation is often regarded as impractical. However, when resorting to numerical algorithms, we show that the NNM computation is possible with limited implementation effort, which paves the way to a practical method for determining the NNMs of nonlinear mechanical systems. The proposed algorithm relies on two main techniques, namely a shooting procedure and a method for the continuation of NNM motions. The algorithm is demonstrated using four different mechanical systems, a weakly and a strongly nonlinear two-degree-of-freedom system, a simplified discrete model of a nonlinear bladed disk and a nonlinear cantilever beam discretized by the finite element method.

[1]  H. Nijmeijer,et al.  Dynamics and Bifurcations ofNon - Smooth Mechanical Systems , 2006 .

[2]  R. M. Rosenberg,et al.  The Normal Modes of Nonlinear n-Degree-of-Freedom Systems , 1962 .

[3]  Joseph C. Slater,et al.  A numerical method for determining nonlinear normal modes , 1996 .

[4]  Alexander F. Vakakis,et al.  Normal modes and localization in nonlinear systems , 1996 .

[5]  R. Rand,et al.  Normal modes and global dynamics of a two-degree-of-freedom non-linear system—I. Low energies , 1992 .

[6]  Eric Pesheck,et al.  Reduced order modeling of nonlinear structural systems using nonlinear normal modes and invariant manifolds , 2000 .

[7]  Rajendra Singh,et al.  Analysis of periodically excited non-linear systems by a parametric continuation technique , 1995 .

[8]  Christophe Pierre,et al.  Normal Modes for Non-Linear Vibratory Systems , 1993 .

[9]  Willy Govaerts,et al.  Numerical Continuation of Bifurcations of Limit Cycles in MATLAB , 2005, SIAM J. Sci. Comput..

[10]  Christophe Pierre,et al.  Normal modes of vibration for non-linear continuous systems , 1994 .

[11]  Nenad Mihajlovic,et al.  Torsional and lateral vibrations in flexible rotor systems with friction , 2005 .

[12]  Alexander F. Vakakis,et al.  Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment , 2005 .

[13]  Peter Eberhard,et al.  Sensitivity analysis for dynamic mechanical systems with finite rotations , 2008 .

[14]  Fengxia Wang,et al.  Nonlinear normal modes in multi-mode models of an inertially coupled elastic structure , 2006 .

[15]  Alexander F. Vakakis,et al.  NONLINEAR NORMAL MODES , 2001 .

[16]  Bruno Cochelin,et al.  Two methods for the computation of nonlinear modes of vibrating systems at large amplitudes , 2006 .

[17]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[18]  R. Seydel Practical bifurcation and stability analysis : from equilibrium to chaos , 1994 .

[19]  G. C. Gardner Viscous Flow of a Liquid Over a Rotating Surface With Gas Drag , 1963 .

[20]  Alexander F. Vakakis,et al.  Nonlinear normal modes, Part I: An attempt to demystify them , 2008 .

[21]  M. Géradin,et al.  Mechanical Vibrations: Theory and Application to Structural Dynamics , 1994 .

[22]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[23]  E. J. Doedel,et al.  Computation of Periodic Solutions of Conservative Systems with Application to the 3-body Problem , 2003, Int. J. Bifurc. Chaos.

[24]  Alexander F. Vakakis,et al.  Nonlinear normal modes, Part I: A useful framework for the structural dynamicist , 2009 .

[25]  Marco Amabili,et al.  Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures , 2006 .

[26]  Oleg Gendelman,et al.  Energy Pumping in Nonlinear Mechanical Oscillators: Part II—Resonance Capture , 2001 .

[27]  R. Seydel From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis , 1988 .

[28]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[29]  Pedro Ribeiro,et al.  Non-linear forced vibrations of thin/thick beams and plates by the finite element and shooting methods , 2004 .

[30]  Emilio Freire,et al.  Continuation of periodic orbits in conservative and Hamiltonian systems , 2003 .

[31]  R. Seydel Practical Bifurcation and Stability Analysis , 1994 .

[32]  Laurette S. Tuckerman,et al.  Numerical methods for bifurcation problems , 2004 .

[33]  Fabrice Thouverez,et al.  Presentation of the ECL Benchmark , 2003 .

[34]  Alexander F. Vakakis,et al.  Irreversible Passive Energy Transfer in Coupled Oscillators with Essential Nonlinearity , 2005, SIAM J. Appl. Math..

[35]  P. Sundararajan,et al.  An algorithm for response and stability of large order non-linear systems : Application to rotor systems , 1998 .

[36]  R. M. Rosenberg,et al.  On Nonlinear Vibrations of Systems with Many Degrees of Freedom , 1966 .

[37]  Marco Amabili,et al.  Reduced-order models for large-amplitude vibrations of shells including in-plane inertia , 2008 .

[38]  Christophe Pierre,et al.  Non-linear normal modes and invariant manifolds , 1991 .

[39]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[40]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[41]  R. M. Rosenberg,et al.  Normal Modes of Nonlinear Dual-Mode Systems , 1960 .

[42]  Romesh Saigal Numerical Continuation Methods, An Introduction (Eugene Allgower and Kurt Georg) , 1991, SIAM Rev..

[43]  R. Seydel From equilibrium to chaos , 1988 .

[44]  Oleg Gendelman,et al.  Energy pumping in nonlinear mechanical oscillators : Part I : Dynamics of the underlying Hamiltonian systems , 2001 .