Drug-lipid interaction evaluation: why a 19th century solution?

The affinity of a drug candidate for a biological membrane (its lipophilicity) is closely related to the pharmacologically crucial events of absorption, biodistribution, metabolization and excretion. The evolution of knowledge of biological membranes during the past two decades contrasts with the rudimentary parameter most commonly used to assess lipophilicity: P(o/w), the octanol-water partition coefficient. P(o/w) is especially unrealistic when testing molecules that are polar or partially charged. By contrast, lipid vesicle-based methods determine the extent of the actual partition of a drug to a membrane much more accurately, and have the additional advantage of enabling the choice of the lipid composition considered most suitable to answer a specific biological or pharmaceutical question. In addition, some of these methods are appropriate for high throughput screening, thus shifting determinations of membrane partition to a more preliminary stage of drug development. This streamlines research and development, by saving the time and money that would be spent on unpromising leads.

[1]  James I. Wells,et al.  Pharmaceutical preformulation : the physicochemical properties of drug substances , 1988 .

[2]  J. Mocák,et al.  Chemometrical study of the anaesthetical activity of alkoxyphenylcarbamic acid esters. , 2010, Die Pharmazie.

[3]  Edward A Dennis,et al.  Lipidomics joins the omics evolution , 2009, Proceedings of the National Academy of Sciences.

[4]  Charles Tanford,et al.  The Hydrophobic Effect: Formation of Micelles and Biological Membranes , 1991 .

[5]  Marco M. Domingues,et al.  Fold-unfold transitions in the selectivity and mechanism of action of the N-terminal fragment of the bactericidal/permeability-increasing protein (rBPI(21)). , 2009, Biophysical journal.

[6]  Miguel A R B Castanho,et al.  An overview of the biophysical applications of atomic force microscopy. , 2003, Biophysical chemistry.

[7]  Hinrich W. H. Göhlmann,et al.  Pharmaceutical R&D , 2009 .

[8]  A. J. Staverman,et al.  The entropy of liquid mixtures: I. The theory of Raoult's Law , 2010 .

[9]  Bernard Testa,et al.  Immobilized artificial membrane HPLC in drug research. , 2003, Journal of medicinal chemistry.

[10]  S. Singer,et al.  The Fluid Mosaic Model of the Structure of Cell Membranes , 1972, Science.

[11]  S. Krämer,et al.  The pH-Dependence in the Partitioning Behaviour of (RS)-[3H]Propranolol Between MDCK Cell Lipid Vesicles and Buffer , 1996, Pharmaceutical Research.

[12]  H. Wu,et al.  Binding of peptides with basic residues to membranes containing acidic phospholipids. , 1991, Biophysical journal.

[13]  T. Hartmann,et al.  Lipophilicity - beyond octanol/water: a short comparison of modern technologies. , 2004, Drug discovery today. Technologies.

[14]  D. Müller AFM: a nanotool in membrane biology. , 2008 .

[15]  A. Ghose,et al.  Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragmental Methods: An Analysis of ALOGP and CLOGP Methods , 1998 .

[16]  Jörg Keldenich,et al.  Multilamellar Liposomes and Solid-Supported Lipid Membranes (TRANSIL): Screening of Lipid-Water Partitioning Toward a High-Throughput Scale , 2001, Pharmaceutical Research.

[17]  R. Daniels,et al.  Pharmaceutical Preformulation – The Physicochemical Properties of Drug Substances ‐ von James I. Wells, 227 S., 47 Abb., 99 Tab., Preis: £ 35.00, Ellis Horwood Limited, Chichester, England 1988 , 1989 .

[18]  Caron,et al.  Combined molecular lipophilicity descriptors and their role in understanding intramolecular effects. , 1999, Pharmaceutical science & technology today.

[19]  Kerly F. M. Pasqualoto,et al.  QSAR Modeling of a Set of Pyrazinoate Esters as Antituberculosis Prodrugs , 2010, Archiv der Pharmazie.

[20]  C. Pidgeon,et al.  Membrane partition coefficients chromatographically measured using immobilized artificial membrane surfaces. , 1995, Analytical chemistry.

[21]  H. Meyer Zur Theorie der Alkoholnarkose , 1899, Archiv für experimentelle Pathologie und Pharmakologie.

[22]  Emilio Benfenati,et al.  QSPR modeling of octanol/water partition coefficient of antineoplastic agents by balance of correlations. , 2010, European journal of medicinal chemistry.

[23]  J. Richmond The 3Rs - Past, Present and Future , 2000 .

[24]  M. N. Melo,et al.  Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations , 2009, Nature Reviews Microbiology.

[25]  W. Nernst Verteilung eines Stoffes zwischen zwei Lösungsmitteln und zwischen Lösungsmittel und Dampfraum , 1891 .

[26]  G. Hodges,et al.  Practical methods for the measurement of logP for surfactants. , 2010, Ecotoxicology and environmental safety.

[27]  Pickett,et al.  Computational methods for the prediction of 'drug-likeness' , 2000, Drug discovery today.

[28]  Michael R. Yeaman,et al.  Mechanisms of Antimicrobial Peptide Action and Resistance , 2003, Pharmacological Reviews.

[29]  J. Seelig,et al.  Correlation of membrane/water partition coefficients of detergents with the critical micelle concentration. , 2000, Biophysical journal.

[30]  D. Marsh,et al.  Cholesterol-induced fluid membrane domains: a compendium of lipid-raft ternary phase diagrams. , 2009, Biochimica et biophysica acta.

[31]  Manuel Prieto,et al.  Quantifying molecular partition into model systems of biomembranes: an emphasis on optical spectroscopic methods. , 2003, Biochimica et biophysica acta.

[32]  D. Sargent,et al.  Membrane lipid phase as catalyst for peptide-receptor interactions. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[33]  H. Riezman,et al.  Lipid pickup and delivery , 2004, Nature Cell Biology.

[34]  I. Bronshtein,et al.  On the Correlation Between Hydrophobicity, Liposome Binding and Cellular Uptake of Porphyrin Sensitizers , 2006, Photochemistry and photobiology.

[35]  H. Mewes,et al.  Can we estimate the accuracy of ADME-Tox predictions? , 2006, Drug discovery today.

[36]  R. Austin,et al.  Partitioning of ionizing molecules between aqueous buffers and phospholipid vesicles. , 1995, Journal of pharmaceutical sciences.

[37]  M Balls,et al.  Replacement of animal procedures: alternatives in research, education and testing , 1994, Laboratory animals.

[38]  N. Santos,et al.  Interaction of peptides with biomembranes assessed by potential‐sensitive fluorescent probes , 2008, Journal of peptide science : an official publication of the European Peptide Society.

[39]  F. Szoka,et al.  Comparative properties and methods of preparation of lipid vesicles (liposomes). , 1980, Annual review of biophysics and bioengineering.

[40]  A. Fedorov,et al.  Lipidic Membranes Are Potential “Catalysts” in the Ligand Activity of the Multifunctional Pentapeptide Neokyotorphin , 2005, Chembiochem : a European journal of chemical biology.

[41]  Alan E Mark,et al.  University of Groningen Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers Yesylevskyy, , 2009 .

[42]  M. Khaledi,et al.  Interaction of Basic Drugs with Lipid Bilayers Using Liposome Electrokinetic Chromatography , 2004, Pharmaceutical Research.

[43]  I. Belostotsky,et al.  Mitochondrial targeting for photochemotherapy. Can selective tumor cell killing be predicted based on n-octanol/water distribution coefficients? , 2011, Biotechnic & histochemistry : official publication of the Biological Stain Commission.

[44]  M. Castanho,et al.  Lipid membrane-induced optimization for ligand–receptor docking: recent tools and insights for the “membrane catalysis” model , 2005, European Biophysics Journal.

[45]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[46]  E. Blout,et al.  Conformation of gramicidin A in phospholipid vesicles: circular dichroism studies of effects of ion binding, chemical modification, and lipid structure. , 1981, Biochemistry.

[47]  S. Schreier,et al.  EPR STUDY OF MEMBRANE PARTITIONING, ORIENTATION, AND MEMBRANE-MODULATED ALKALINE HYDROLYSIS OF A SPIN-LABELED BENZOIC ACID ESTER , 1991 .

[48]  S. H. Lin,et al.  Membrane-buffer partition coefficients of tetracaine for liquid-crystal and solid-gel membranes estimated by direct ultraviolet spectrophotometry. , 1988, Biochimica et biophysica acta.

[49]  L. Mayer,et al.  Vesicles of variable sizes produced by a rapid extrusion procedure. , 1986, Biochimica et biophysica acta.

[50]  E. Gratton,et al.  Lipid--protein interactions revealed by two-photon microscopy and fluorescence correlation spectroscopy. , 2005, Accounts of chemical research.

[51]  Frédéric Pincet,et al.  Giant vesicles formed by gentle hydration and electroformation: a comparison by fluorescence microscopy. , 2005, Colloids and surfaces. B, Biointerfaces.

[52]  S. Semrau,et al.  Membrane heterogeneity – from lipid domains to curvature effects , 2009 .