Field theories for stochastic processes

This thesis is a collection of collaborative research work which uses field-theoretic techniques to approach three different areas of stochastic dynamics: Branching Processes, First-passage times of processes with are subject to both white and coloured noise, and numerical and analytical aspects of first-passage times in fractional Brownian Motion. Chapter 1 (joint work with Rosalba Garcia Millan, Johannes Pausch, and Gunnar Pruessner, appeared in Phys. Rev. E 98 (6):062107) contains an analysis of non-spatial branching processes with arbitrary offspring distribution. Here our focus lies on the statistics of the number of particles in the system at any given time. We calculate a host of observables using Doi-Peliti field theory and find that close to criticality these observables no longer depend on the details of the offspring distribution, and are thus universal. In Chapter 2 (joint work with Ignacio Bordeu, Saoirse Amarteifio, Rosalba Garcia Millan, Nanxin Wei, and Gunnar Pruessner, appeared in Sci. Rep. 9:15590) we study the number of sites visited by a branching random walk on general graphs. To do so, we introduce a fieldtheoretic tracing mechanism which keeps track of all already visited sites. We find the scaling laws of the moments of the distribution near the critical point. Chapter 3 (joint work with Gunnar Pruessner and Guillaume Salbreux, submitted, arXiv: 2006.00116) provides an analysis of the first-passage time problem for stochastic processes subject to white and coloured noise. By way of a perturbation theory, I give a systematic and controlled expansion of the moment generating function of first-passage times. In Chapter 4, we revise the tracing mechanism found earlier and use it to characterise three different extreme values, first-passage times, running maxima, and mean volume explored. By formulating these in field-theoretic language, we are able to derive new results for a class of non-Markovian stochastic processes. Chapter 5 and 6 are concerned with the first-passage time distribution of fractional Brownian Motion. Chapter 5 (joint work with Kay Wiese, appeared in Phys. Rev. E 101 (4):043312) introduces a new algorithm to sample them efficiently. Chapter 6 (joint work with Maxence Arutkin and Kay Wiese, submitted, arXiv:1908.10801) gives a field-theoretically obtained perturbative result of the first-passage time distribution in the presence of linear and non-linear drift.

[1]  M. Rosenbaum,et al.  Volatility is rough , 2014, 1410.3394.

[2]  E. N. Gilbert,et al.  Random Plane Networks , 1961 .

[3]  P. E. Kopp,et al.  Stock Price Returns and the Joseph Effect: A Fractional Version of the Black-Scholes Model , 1995 .

[4]  David Callan,et al.  A combinatorial survey of identities for the double factorial , 2009, 0906.1317.

[5]  Wajnryb,et al.  Mean first-passage time in the presence of colored noise: A random-telegraph-signal approach. , 1991, Physical Review A. Atomic, Molecular, and Optical Physics.

[6]  Francesca Colaiori,et al.  Average shape of a fluctuation: universality in excursions of stochastic processes. , 2003, Physical review letters.

[7]  Stanley,et al.  Self-organized branching processes: Mean-field theory for avalanches. , 1995, Physical review letters.

[8]  A. Godec,et al.  Universal proximity effect in target search kinetics in the few-encounter limit , 2016, 1611.07788.

[9]  Krzysztof Burnecki,et al.  Universal algorithm for identification of fractional Brownian motion. A case of telomere subdiffusion. , 2012, Biophysical journal.

[10]  H. Janssen,et al.  On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties , 1976 .

[11]  J. Łuczka,et al.  Non-Markovian stochastic processes: colored noise. , 2005, Chaos.

[12]  D. Cassi,et al.  Random walks on graphs: ideas, techniques and results , 2005 .

[13]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[14]  K. Wiese First passage in an interval for fractional Brownian motion. , 2018, Physical review. E.

[15]  R. Albert Scale-free networks in cell biology , 2005, Journal of Cell Science.

[16]  S. Havlin,et al.  Scaling theory of transport in complex biological networks , 2007, Proceedings of the National Academy of Sciences.

[17]  Dynamic crossover in the global persistence at criticality , 2006, cond-mat/0612656.

[18]  L. Peliti Path integral approach to birth-death processes on a lattice , 1985 .

[19]  R. Guimerà,et al.  The worldwide air transportation network: Anomalous centrality, community structure, and cities' global roles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[21]  Tommi Sottinen,et al.  Fractional Brownian motion, random walks and binary market models , 2001, Finance Stochastics.

[22]  G. Oshanin,et al.  Spectral Content of a Single Non-Brownian Trajectory , 2019, Physical Review X.

[23]  Cornell,et al.  Global Persistence Exponent for Nonequilibrium Critical Dynamics. , 1996, Physical review letters.

[24]  A. Siegert On the First Passage Time Probability Problem , 1951 .

[25]  M. Hernández‐Pajares,et al.  Occurrence of solar flares viewed with GPS: Statistics and fractal nature , 2014 .

[26]  J. Cardy,et al.  Non-Equilibrium Statistical Mechanics and Turbulence , 2009 .

[27]  U. Marini Bettolo Marconi,et al.  Active particles under confinement and effective force generation among surfaces. , 2018, Soft matter.

[28]  Satya N. Majumdar,et al.  Persistence and first-passage properties in nonequilibrium systems , 2013, 1304.1195.

[29]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[30]  A. Barabasi,et al.  Scale-free characteristics of random networks: the topology of the world-wide web , 2000 .

[31]  G. Molchan Maximum of a Fractional Brownian Motion: Probabilities of Small Values , 1999 .

[32]  Vladimir I. Piterbarg,et al.  Asymptotic Methods in the Theory of Gaussian Processes and Fields , 1995 .

[33]  Alberto Rosso,et al.  Maximum of N independent Brownian walkers till the first exit from the half-space , 2010, 1004.5042.

[34]  Anthony C. Davison,et al.  Statistics of Extremes , 2015, International Encyclopedia of Statistical Science.

[35]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[36]  James Pickands,et al.  Asymptotic properties of the maximum in a stationary Gaussian process. , 1969 .

[37]  P. Jung Colored noise in dynamical systems: Some exact solutions , 1997 .

[38]  Imre Pázsit,et al.  Neutron Fluctuations: A Treatise on the Physics of Branching Processes , 2007 .

[39]  Remarks on Pickands theorem , 2009, 0904.3832.

[40]  J. Stoyanov A Guide to First‐passage Processes , 2003 .

[41]  D. Darling,et al.  THE FIRST PASSAGE PROBLEM FOR A CONTINUOUS MARKOFF PROCESS , 1953 .

[42]  Shamik Gupta,et al.  Dynamics of a tagged monomer: effects of elastic pinning and harmonic absorption. , 2013, Physical review letters.

[43]  G. Weiss,et al.  The theory of ordered spans of unrestricted random walks , 1976 .

[44]  Krishna P. Gummadi,et al.  On the evolution of user interaction in Facebook , 2009, WOSN '09.

[45]  Mathieu Delorme,et al.  Perturbative expansion for the maximum of fractional Brownian motion. , 2016, Physical review. E.

[46]  Ryogo Kubo,et al.  Note on the Stochastic Theory of Resonance Absorption , 1954 .

[47]  L. Pal,et al.  On the theory of stochastic processes in nuclear reactors , 1958 .

[48]  A. Cortines,et al.  Extremes of branching Ornstein-Uhlenbeck processes , 2018, 1810.05809.

[49]  K. Sneppen,et al.  Diffusion on complex networks: a way to probe their large-scale topological structures , 2003, cond-mat/0312476.

[50]  S. Sawyer,et al.  Maximum geographic range of a mutant allele considered as a subtype of a Brownian branching random field. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[51]  T. Vojta,et al.  Fractional Brownian motion with a reflecting wall. , 2017, Physical review. E.

[52]  Ronald Dickman,et al.  Path integrals and perturbation theory for stochastic processes , 2002 .

[53]  Y. Ouknine,et al.  Estimation of the drift of fractional Brownian motion , 2009, 0905.1419.

[54]  K. J. Wiese,et al.  Maximum of a Fractional Brownian Motion: Analytic Results from Perturbation Theory. , 2015, Physical review letters.

[55]  G. Szamel Stochastic thermodynamics for self-propelled particles. , 2019, Physical review. E.

[56]  J. Demmel,et al.  Sun Microsystems , 1996 .

[57]  S. Redner,et al.  Steady state, relaxation and first-passage properties of a run-and-tumble particle in one-dimension , 2017, 1711.08474.

[58]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[59]  James Pickands The two-dimensional Poisson process and extremal processes , 1971 .

[60]  Victor Martin-Mayor,et al.  Field Theory, the Renormalization Group and Critical Phenomena , 1984 .

[61]  I M Sokolov Cyclization of a polymer: first-passage problem for a non-Markovian process. , 2003, Physical review letters.

[62]  Shen Lin,et al.  The range of tree-indexed random walk in low dimensions , 2014, 1401.7830.

[63]  E. Hopf The partial differential equation ut + uux = μxx , 1950 .

[64]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[65]  A. Chechkin,et al.  First passage statistics for diffusing diffusivity , 2018, Journal of Physics A: Mathematical and Theoretical.

[66]  Fractional Brownian motion approach to polymer translocation: the governing equation of motion. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[68]  A. M. Berezhkovskii,et al.  Wiener sausage volume moments , 1989 .

[69]  K. Wiese On the Perturbation Expansion of the KPZ Equation , 1998, cond-mat/9802068.

[70]  G. Pruessner,et al.  Spatio-temporal Correlations in the Manna Model in one, three and five dimensions , 2016, 1608.00964.

[71]  B. Durhuus,et al.  On the spectral dimension of random trees , 2006 .

[72]  David R. Cox,et al.  The Theory of Stochastic Processes , 1967, The Mathematical Gazette.

[73]  Lasse Laurson,et al.  Evolution of the average avalanche shape with the universality class , 2013, Nature Communications.

[74]  J. R. Wallis,et al.  Noah, Joseph, and Operational Hydrology , 1968 .

[75]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .

[76]  Á. Corral,et al.  Criticality and self-organization in branching processes: application to natural hazards , 2012, 1207.2589.

[77]  R. Durrett Branching Process Models of Cancer , 2015 .

[78]  S. N. Dorogovtsev,et al.  Laplacian spectra of, and random walks on, complex networks: are scale-free architectures really important? , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  S. Majumdar,et al.  Record statistics and persistence for a random walk with a drift , 2012, 1206.6972.

[80]  David Aldous,et al.  The Continuum Random Tree III , 1991 .

[81]  Ali Esmaili,et al.  Probability and Random Processes , 2005, Technometrics.

[82]  V. Denoël,et al.  Second-order moment of the first passage time of a quasi-Hamiltonian oscillator with stochastic parametric and forcing excitations , 2018, Journal of Sound and Vibration.

[83]  J. Cole On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .

[84]  Umberto Marini Bettolo Marconi,et al.  Multidimensional stationary probability distribution for interacting active particles , 2015, Scientific Reports.

[85]  K. Dahmen,et al.  Avalanche Statistics Identify Intrinsic Stellar Processes near Criticality in KIC 8462852. , 2016, Physical review letters.

[86]  B. Derrida,et al.  Large deviation function of a tracer position in single file diffusion , 2015, 1505.04572.

[87]  A. Chechkin,et al.  First Passage Behavior of Multi-Dimensional Fractional Brownian Motion and Application to Reaction Phenomena , 2013, 1306.1667.

[88]  Mathieu Delorme,et al.  Extreme-value statistics of fractional Brownian motion bridges. , 2016, Physical review. E.

[89]  Klein,et al.  Staging: A sampling technique for the Monte Carlo evaluation of path integrals. , 1985, Physical review. B, Condensed matter.

[90]  Exact results for the Kardar-Parisi-Zhang equation with spatially correlated noise , 1998, cond-mat/9808325.

[91]  J. Bouchaud,et al.  Theory Of Financial Risk And Derivative Pricing , 2000 .

[92]  Majumdar,et al.  Survival Probability of a Gaussian Non-Markovian Process: Application to the T=0 Dynamics of the Ising Model. , 1996, Physical review letters.

[93]  G. Roberts,et al.  Exact simulation of diffusions , 2005, math/0602523.

[94]  Krzysztof Dębicki,et al.  A note on upper estimates for Pickands constants , 2008 .

[95]  Abhyudai Singh,et al.  First-passage time approach to controlling noise in the timing of intracellular events , 2017, Proceedings of the National Academy of Sciences.

[96]  J. L. Gall,et al.  Random trees and applications , 2005 .

[97]  K. J. Wiese,et al.  Extreme events for fractional Brownian motion with drift: Theory and numerical validation. , 2019, Physical review. E.

[98]  Yasunori Kitamura,et al.  Delayed neutron effect in time-domain fluctuation analyses of neutron detector current signals , 2019, Annals of Nuclear Energy.

[99]  T. Ala‐Nissila,et al.  Polymer translocation: the first two decades and the recent diversification. , 2014, Soft matter.

[100]  Saoirse Amarteifio Field theoretic formulation and empirical tracking of spatial processes , 2019 .

[101]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[102]  S. Majumdar,et al.  Perturbation theory for fractional Brownian motion in presence of absorbing boundaries. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  On the growth of bounded trees , 2001, cond-mat/0112394.

[104]  O. Bénichou,et al.  Universal first-passage statistics in aging media. , 2017, Physical review. E.

[105]  Stanley,et al.  Number of distinct sites visited by N random walkers. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[106]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[107]  P. Le Doussal,et al.  Driven particle in a random landscape: disorder correlator, avalanche distribution, and extreme value statistics of records. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[108]  G. Pruessner,et al.  Comment on "Finite-size scaling of survival probability in branching processes". , 2016, Physical review. E.

[109]  Martin Hairer Ergodicity of stochastic differential equations driven by fractional Brownian motion , 2003, math/0304134.

[110]  Laurent Decreusefond,et al.  Fractional Brownian motion: theory and applications , 1998 .

[111]  P. Krapivsky,et al.  Dynamical properties of single-file diffusion , 2015, 1505.01287.

[112]  R. Lyons Random Walks and Percolation on Trees , 1990 .

[113]  Q. Sattentau,et al.  Avoiding the void: cell-to-cell spread of human viruses , 2008, Nature Reviews Microbiology.

[114]  G. Vineyard The Number of Distinct Sites Visited in a Random Walk on a Lattice , 1963 .

[115]  K. J. Wiese,et al.  Generalized Arcsine Laws for Fractional Brownian Motion. , 2017, Physical review letters.

[116]  F. Aurzada On the one-sided exit problem for fractional Brownian motion , 2011, 1101.5072.

[117]  S. Majumdar,et al.  Asymptotic behavior of self-affine processes in semi-infinite domains. , 2008, Physical review letters.

[118]  J. Sethna,et al.  Universality beyond power laws and the average avalanche shape , 2011 .

[119]  J. Joanny,et al.  Pressure and flow of exponentially self-correlated active particles. , 2017, Physical review. E.

[120]  J. Wolfowitz Review: William Feller, An introduction to probability theory and its applications. Vol. I , 1951 .

[121]  Julien Tailleur,et al.  How Far from Equilibrium Is Active Matter? , 2016, Physical review letters.

[122]  Warner Marzocchi,et al.  A double branching model for earthquake occurrence , 2008 .

[123]  Mason A. Porter,et al.  Random walks and diffusion on networks , 2016, ArXiv.

[124]  Carsten Wiuf,et al.  Subnets of scale-free networks are not scale-free: sampling properties of networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[125]  Felix M. Schmidt,et al.  The critical Casimir effect in films for generic non-symmetry-breaking boundary conditions , 2011, 1110.1241.

[126]  Mathieu Delorme,et al.  Pickands’ constant at first order in an expansion around Brownian motion , 2016, 1609.07909.

[127]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[128]  J. Bouchaud,et al.  Some applications of first-passage ideas to finance , 2013, 1306.3110.

[129]  A. Vulpiani,et al.  The entropy production of Ornstein–Uhlenbeck active particles: a path integral method for correlations , 2019, Journal of Statistical Mechanics: Theory and Experiment.

[130]  Paul C. Martin,et al.  Statistical Dynamics of Classical Systems , 1973 .

[131]  K. Athreya Coalescence in Branching Processes , 2016 .

[132]  M. Vidal,et al.  Effect of sampling on topology predictions of protein-protein interaction networks , 2005, Nature Biotechnology.

[133]  B. Øksendal,et al.  Stochastic Calculus for Fractional Brownian Motion and Applications , 2008 .

[134]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[135]  Avalanche shape and exponents beyond mean-field theory , 2014, 1407.7353.

[136]  Michel Mandjes,et al.  ON SPECTRAL SIMULATION OF FRACTIONAL BROWNIAN MOTION , 2003, Probability in the Engineering and Informational Sciences.

[137]  R. Friedrich,et al.  Mean first passage time for a class of non-Markovian processes. , 2007, Chaos.

[138]  R. Durrett Random Graph Dynamics: References , 2006 .

[139]  I. Nemenman,et al.  The Berry phase and the pump flux in stochastic chemical kinetics , 2006, q-bio/0612018.

[140]  B. Derrida,et al.  Correlations of the density and of the current in non-equilibrium diffusive systems , 2016, 1608.03867.

[141]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[142]  Stein,et al.  Probability distributions and escape rates for systems driven by quasimonochromatic noise. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[143]  F. Krzakala,et al.  Critical ageing of Ising ferromagnets relaxing from an ordered state , 2006, cond-mat/0604412.

[144]  Mean first-passage times and colored noise. , 1988, Physical review. A, General physics.

[145]  K. Wiese Span Observables: “When is a Foraging Rabbit No Longer Hungry?” , 2019, Journal of Statistical Physics.

[146]  S. Majumdar,et al.  Exact distributions of the number of distinct and common sites visited by N independent random walkers. , 2013, Physical review letters.

[147]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[148]  Brian Cowan,et al.  Topics in Statistical Mechanics , 2005, Advanced Textbooks in Physics.

[149]  Juan Ruben Gomez-Solano,et al.  Generalized Ornstein-Uhlenbeck model for active motion. , 2019, Physical review. E.

[150]  A. Godec,et al.  First passage time distribution in heterogeneity controlled kinetics: going beyond the mean first passage time , 2015, Scientific Reports.

[151]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[152]  G. Schehr,et al.  Run-and-tumble particle in one-dimensional confining potentials: Steady-state, relaxation, and first-passage properties. , 2018, Physical review. E.

[153]  I. Simonsen Measuring anti-correlations in the nordic electricity spot market by wavelets , 2001, cond-mat/0108033.

[154]  J. Krug,et al.  Record statistics for biased random walks, with an application to financial data. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[155]  Andreas Klaus,et al.  Altered avalanche dynamics in a developmental NMDAR hypofunction model of cognitive impairment , 2018, Translational Psychiatry.

[156]  Á. Corral,et al.  Finite-size scaling of survival probability in branching processes. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[157]  Wilhelm Braun,et al.  Sign changes as a universal concept in first-passage-time calculations. , 2017, Physical review. E.

[158]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[159]  M. Tamm,et al.  Number of common sites visited by N random walkers. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[160]  Klaus Schulten,et al.  First passage time approach to diffusion controlled reactions , 1980 .

[161]  Edgar E. Peters Chaos and order in the capital markets , 1991 .

[162]  Pol D. Spanos,et al.  Galerkin scheme based determination of first-passage probability of nonlinear system response , 2014 .

[163]  F. Comte,et al.  Long memory in continuous‐time stochastic volatility models , 1998 .

[164]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[165]  Ilya Nemenman,et al.  Universal geometric theory of mesoscopic stochastic pumps and reversible ratchets. , 2007, Physical review letters.

[166]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[167]  Distribution of the maximum of a fractional Brownian motion , 1997 .

[168]  Palleschi,et al.  Mean first-passage time for random-walk span: Comparison between theory and numerical experiment. , 1989, Physical review. A, General physics.

[170]  Eytan Domany,et al.  Introduction to the renormalization group and to critical phenomena , 1977 .

[171]  Spectral dimension of a wire network , 1985 .

[172]  M. Magnasco,et al.  A phase transition in the first passage of a Brownian process through a fluctuating boundary with implications for neural coding , 2012, Proceedings of the National Academy of Sciences.

[173]  G. Pruessner,et al.  Field-theoretic approach to the universality of branching processes , 2018, Physical Review E.

[174]  Piet Van Mieghem,et al.  Epidemic processes in complex networks , 2014, ArXiv.

[175]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[176]  Á. Corral,et al.  Exact Derivation of a Finite-Size Scaling Law and Corrections to Scaling in the Geometric Galton-Watson Process , 2016, PloS one.

[177]  R. Davies,et al.  Tests for Hurst effect , 1987 .

[178]  C. De Dominicis,et al.  TECHNIQUES DE RENORMALISATION DE LA THÉORIE DES CHAMPS ET DYNAMIQUE DES PHÉNOMÈNES CRITIQUES , 1976 .

[179]  Thomas J. Higgins,et al.  Random Processes in Nuclear Reactors , 1975, IEEE Transactions on Nuclear Science.

[180]  E. Montroll Random walks on lattices , 1969 .

[181]  Boming Yu,et al.  SOME FRACTAL CHARACTERS OF POROUS MEDIA , 2001 .

[182]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[183]  A. Chechkin,et al.  First passage behaviour of fractional Brownian motion in two-dimensional wedge domains , 2011, 1102.3633.

[184]  Eugene P. Wigner,et al.  Formulas and Theorems for the Special Functions of Mathematical Physics , 1966 .

[185]  G. Pavliotis A multiscale approach to Brownian motors , 2005, cond-mat/0504403.

[186]  G. Pruessner,et al.  Time-dependent branching processes: a model of oscillating neuronal avalanches , 2020, Scientific Reports.

[187]  Donald S. Fussell,et al.  Computer rendering of stochastic models , 1982, Commun. ACM.

[188]  O. Bénichou,et al.  Mean first-passage times of non-Markovian random walkers in confinement , 2016, Nature.

[189]  L. Pontryagin,et al.  Noise in nonlinear dynamical systems: Appendix: On the statistical treatment of dynamical systems , 1989 .

[190]  T. Verechtchaguina,et al.  First passage time densities in non-Markovian models with subthreshold oscillations , 2006 .

[191]  L. Sanders,et al.  First passage times for a tracer particle in single file diffusion and fractional Brownian motion. , 2012, The Journal of chemical physics.

[192]  L. Benigni,et al.  Hausdorff Dimension of the Record Set of a Fractional Brownian , 2017, 1706.09726.

[193]  R. Dasgupta,et al.  Scaling exponents for random walks on Sierpinski carpets and number of distinct sites visited: a new algorithm for infinite fractal lattices , 1999 .

[194]  William H. Press,et al.  Numerical recipes in C , 2002 .

[195]  M E Cates,et al.  Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics? , 2012, Reports on progress in physics. Physical Society.

[196]  O. Bénichou,et al.  From first-passage times of random walks in confinement to geometry-controlled kinetics , 2014 .

[197]  Wei Wang,et al.  Unification of theoretical approaches for epidemic spreading on complex networks , 2016, Reports on progress in physics. Physical Society.

[198]  Jürgen Köhler,et al.  Fractional Brownian motion in crowded fluids , 2012 .

[199]  Ilkka Norros,et al.  On the Use of Fractional Brownian Motion in the Theory of Connectionless Networks , 1995, IEEE J. Sel. Areas Commun..

[200]  Ivan Nourdin,et al.  Selected Aspects of Fractional Brownian Motion , 2013 .

[201]  H. Callen,et al.  Irreversibility and Generalized Noise , 1951 .

[202]  Chen Fang,et al.  The cultural evolution of national constitutions , 2017, J. Assoc. Inf. Sci. Technol..

[203]  Universal fluctuations in the support of the random walk , 1996, cond-mat/9611202.

[204]  Jean-François Le Gall,et al.  THE RANGE OF TREE-INDEXED RANDOM WALK , 2013, Journal of the Institute of Mathematics of Jussieu.

[205]  Rick Durrett,et al.  The genealogy of critical branching processes , 1978 .

[206]  William J. Reed,et al.  On the distribution of family names , 2003 .

[207]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[208]  First passage time densities for random walk spans , 1986 .

[209]  M. DeWeese,et al.  Entropy Production and Fluctuation Theorems for Active Matter. , 2017, Physical review letters.

[210]  G. Szamel Self-propelled particle in an external potential: existence of an effective temperature. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[211]  David Hartich,et al.  Extreme value statistics of ergodic Markov processes from first passage times in the large deviation limit , 2019, Journal of Physics A: Mathematical and Theoretical.

[212]  P. Craigmile Simulating a class of stationary Gaussian processes using the Davies–Harte algorithm, with application to long memory processes , 2003 .

[213]  Rosalba Garcia-Millan,et al.  Volume explored by a branching random walk on general graphs , 2019, Scientific Reports.

[214]  Á. Corral,et al.  Phase transition, scaling of moments, and order-parameter distributions in Brownian particles and branching processes with finite-size effects. , 2018, Physical review. E.

[215]  O. Bénichou,et al.  Global mean first-passage times of random walks on complex networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[216]  Alberto Rosso,et al.  Spatial extent of an outbreak in animal epidemics , 2013, Proceedings of the National Academy of Sciences.

[217]  P. Jung,et al.  Colored Noise in Dynamical Systems , 2007 .

[218]  D.,et al.  Branching Process Approach to Avalanche Dynamics on Complex Networks , 2003 .

[219]  Sancho,et al.  First-passage times for a marginal state driven by colored noise. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[220]  M. Doi Second quantization representation for classical many-particle system , 1976 .

[221]  R. Eichhorn,et al.  Irreversibility in Active Matter Systems: Fluctuation Theorem and Mutual Information , 2018, Physical Review X.

[222]  Aravind Srinivasan,et al.  Modelling disease outbreaks in realistic urban social networks , 2004, Nature.

[223]  R. Metzler,et al.  Fractional Brownian motion in a finite interval: correlations effect depletion or accretion zones of particles near boundaries , 2019, New Journal of Physics.

[224]  George Stell,et al.  First-passage time distribution and non-Markovian diffusion dynamics of protein folding , 2002, cond-mat/0206395.

[225]  Rick Durrett,et al.  Temporal profiles of avalanches on networks , 2016, Nature Communications.

[226]  O. Bénichou,et al.  Mean first-passage times in confined media: from Markovian to non-Markovian processes , 2015 .

[227]  S. Majumdar,et al.  Spatial extent of branching Brownian motion. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[228]  Paul Erdös,et al.  Some Problems on Random Walk in Space , 1951 .

[229]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[230]  Ilkka Norros,et al.  Simulation of fractional Brownian motion with conditionalized random midpoint displacement , 1999 .

[231]  Sidney Redner,et al.  First-passage phenomena and their applications , 2014 .

[232]  C. Allin Cornell,et al.  Earthquakes, Records, and Nonlinear Responses , 1998 .

[233]  J. Bouchaud,et al.  You are in a drawdown. When should you start worrying , 2017, 1707.01457.

[234]  G. Pruessner,et al.  A Field-Theoretic Approach to the Wiener Sausage , 2014, 1407.7419.

[235]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.