Ecological networks : beyond food webs Ecological networks – beyond food webs

1. A fundamental goal of ecological network research is to understand how the complexity observed in nature can persist and how this affects ecosystem functioning. This is essential for us to be able to predict, and eventually mitigate, the consequences of increasing environmental perturbations such as habitat loss, climate change, and invasions of exotic species. 2. Ecological networks can be subdivided into three broad types: 'traditional' food webs, mutualistic networks and host-parasitoid networks. There is a recent trend towards cross-comparisons among network types and also to take a more mechanistic, as opposed to phenomenological, perspective. For example, analysis of network configurations, such as compartments, allows us to explore the role of co-evolution in structuring mutualistic networks and host-parasitoid networks, and of body size in food webs. 3. Research into ecological networks has recently undergone a renaissance, leading to the production of a new catalogue of evermore complete, taxonomically resolved, and quantitative data. Novel topological patterns have been unearthed and it is increasingly evident that it is the distribution of interaction strengths and the configuration of complexity, rather than just its magnitude, that governs network stability and structure. 4. Another significant advance is the growing recognition of the importance of individual traits and behaviour: interactions, after all, occur between individuals. The new generation of high-quality networks is now enabling us to move away from describing networks based on species-averaged data and to start exploring patterns based on individuals. Such refinements will enable us to address more general ecological questions relating to foraging theory and the recent metabolic theory of ecology. 5. We conclude by suggesting a number of 'dead ends' and 'fruitful avenues' for future research into ecological networks.

[1]  M. Huxham,et al.  Do Parasites Reduce the Chances of Triangulation in a Real Food Web , 1996 .

[2]  S. N. Dorogovtsev,et al.  Spectra of complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Robert Belshaw,et al.  The structure of an aphid–parasitoid community , 1999 .

[4]  D. Mason,et al.  Compartments revealed in food-web structure , 2003, Nature.

[5]  Guy Woodward,et al.  Body size in ecological networks. , 2005, Trends in ecology & evolution.

[6]  S. Renner,et al.  Pollination ofNuphar (Nymphaeaceae) in Europe: Flies and bees rather thanDonacia beetles , 1997, Plant Systematics and Evolution.

[7]  G. Polis Ecology: Stability is woven by complex webs , 1998, Nature.

[8]  J. Bascompte,et al.  Invariant properties in coevolutionary networks of plant-animal interactions , 2002 .

[9]  Ricard V Solé,et al.  Press perturbations and indirect effects in real food webs. , 2009, Ecology.

[10]  J. Bascompte,et al.  Structure in plant–animal interaction assemblages , 2006 .

[11]  R. Solé,et al.  Ecological networks and their fragility , 2006, Nature.

[12]  G. Polis,et al.  Complex Trophic Interactions in Deserts: An Empirical Critique of Food-Web Theory , 1991, The American Naturalist.

[13]  A. Barabasi,et al.  Global organization of metabolic fluxes in the bacterium Escherichia coli , 2004, Nature.

[14]  D. Raffaelli,et al.  Food Webs, Body Size and the Curse of the Latin Binomial , 2007 .

[15]  R. Paine Food webs : linkage, interaction strength and community infrastructure , 1980 .

[16]  E. Berlow,et al.  Strong effects of weak interactions in ecological communities , 1999, Nature.

[17]  Helmut Hillebrand,et al.  All wet or dried up? Real differences between aquatic and terrestrial food webs , 2006, Proceedings of the Royal Society B: Biological Sciences.

[18]  Barney Luttbeg,et al.  Are scared prey as good as dead? , 2005, Trends in ecology & evolution.

[19]  James H. Brown,et al.  Toward a metabolic theory of ecology , 2004 .

[20]  B. Schmid,et al.  Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows. , 2007, The Journal of animal ecology.

[21]  N. Bartoloni,et al.  A year‐long plant‐pollinator network , 2006 .

[22]  C. Wilson Could we live with reintroduced large carnivores in the UK , 2004 .

[23]  M. Murakami,et al.  Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[24]  A. Barabasi,et al.  Evolution of the social network of scientific collaborations , 2001, cond-mat/0104162.

[25]  Werner Ulrich,et al.  Consumer-resource body-size relationships in natural food webs. , 2006, Ecology.

[26]  A. Dobson,et al.  Parasites dominate food web links. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[27]  N. Blüthgen,et al.  Ant-hemipteran trophobioses in a Bornean rainforest – diversity, specificity and monopolisation , 2006, Insectes Sociaux.

[28]  M. Emmerson,et al.  Predator–prey body size, interaction strength and the stability of a real food web , 2004 .

[29]  R. Haynes Reproductive Biology of Selected Aquatic Plants , 1988 .

[30]  G. Woodward,et al.  The impact of a sit-and-wait predator: separating consumption and prey emigration , 2002 .

[31]  Jennifer A. Dunne,et al.  The Network Structure of Food Webs , 2005 .

[32]  D. Bolnick,et al.  SCARED TO DEATH? THE EFFECTS OF INTIMIDATION AND CONSUMPTION IN PREDATOR–PREY INTERACTIONS , 2005 .

[33]  U. Jacob Trophic Dynamics of Antarctic Shelf Ecosystems - Food Webs and Energy Flow Budgets , 2005 .

[34]  Extinction cascades and catastrophe in ancient food webs , 2006, Paleobiology.

[35]  B. Hawkins Pattern and Process in Host-Parasitoid Interactions , 1994 .

[36]  Neo D. Martinez,et al.  Food-web structure and network theory: The role of connectance and size , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  V. Jansen,et al.  Variability in interaction strength and implications for biodiversity , 2002 .

[38]  C. Darwin The Origin of Species by Means of Natural Selection, Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[39]  Oswald J. Schmitz,et al.  Effects of Predator Hunting Mode on Grassland Ecosystem Function , 2008, Science.

[40]  Joel E. Cohen,et al.  A Stochastic Theory of Community Food Webs , 1990 .

[41]  R. Paine,et al.  Food-web analysis through field measurement of per capita interaction strength , 1992, Nature.

[42]  Oswald J. Schmitz,et al.  Behaviorally mediated trophic cascades : Effects of predation risk on food web interactions , 1997 .

[43]  M. McPeek,et al.  Direct and Indirect Effects of Predators on Two Anuran Species along an Environmental Gradient , 1994 .

[44]  Jordi Bascompte,et al.  Plant-Animal Mutualistic Networks: The Architecture of Biodiversity , 2007 .

[45]  Rebecca M. B. Harris,et al.  Disturbance frequency influences patch dynamics in stream benthic algal communities , 2008, Oecologia.

[46]  Charles M. Newman,et al.  A stochastic theory of community food webs I. Models and aggregated data , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[47]  Anje-Margriet Neutel,et al.  Stability in Real Food Webs: Weak Links in Long Loops , 2002, Science.

[48]  C. Darwin On the Origin of Species by Means of Natural Selection: Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[49]  S. Diehl,et al.  Effects of Enrichment on Three‐Level Food Chains with Omnivory , 2000, The American Naturalist.

[50]  Lawrence M. Dill,et al.  Living on the edge: dugongs prefer to forage in microhabitats that allow escape from rather than avoidance of predators , 2007, Animal Behaviour.

[51]  Neil Rooney,et al.  From energetics to ecosystems : the dynamics and structure of ecological systems , 2006 .

[52]  Michel Loreau,et al.  Functional Diversity of Plant–Pollinator Interaction Webs Enhances the Persistence of Plant Communities , 2005, PLoS biology.

[53]  Joel E. Cohen,et al.  Bacterial traits, organism mass, and numerical abundance in the detrital soil food web of Dutch agricultural grasslands , 2004 .

[54]  Jean-Pierre Gabriel,et al.  Phylogenetic constraints and adaptation explain food-web structure , 2004, Nature.

[55]  N. Waser Flower Constancy: Definition, Cause, and Measurement , 1986, The American Naturalist.

[56]  G. Closs,et al.  Spatial and Temporal Variation in the Structure of an Intermittent-Stream Food Web , 1994 .

[57]  G. Woodward,et al.  Body size, interaction strength and food web dynamics , 2005 .

[58]  J. Terborgh,et al.  Ecological Meltdown in Predator-Free Forest Fragments , 2001, Science.

[59]  Guy Woodward,et al.  Food web structure in riverine landscapes , 2002 .

[60]  Jordi Bascompte,et al.  The smallest of all worlds: pollination networks. , 2006, Journal of theoretical biology.

[61]  B. Cribb,et al.  Flower constancy of the stingless bee Trigona carbonaria Smith (Hymenoptera: Apidae: Meliponini) , 2001 .

[62]  T. Bukovinszky,et al.  Direct and Indirect Effects of Resource Quality on Food Web Structure , 2008, Science.

[63]  Ricard V. Solé,et al.  Complexity and fragility in ecological networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[64]  S. Jennings,et al.  Measurement of body size and abundance in tests of macroecological and food web theory. , 2007, The Journal of animal ecology.

[65]  Guy Woodward,et al.  Quantification and Resolution of a Complex, Size-Structured Food Web , 2005 .

[66]  S. Jennings,et al.  PREDATOR AND PREY BODY SIZES IN MARINE FOOD WEBS , 2008 .

[67]  C. Schal,et al.  The pollination biology of tuckahoe, Peltandra virginica (Araceae) , 1995 .

[68]  David Raffaelli,et al.  How Extinction Patterns Affect Ecosystems , 2004, Science.

[69]  Kevin McCann,et al.  Structural asymmetry and the stability of diverse food webs , 2006, Nature.

[70]  Robert E. Ulanowicz,et al.  Quantitative methods for ecological network analysi , 2004, Comput. Biol. Chem..

[71]  Jane Memmott,et al.  The impact of an alien plant on a native plant-pollinator network: an experimental approach. , 2007, Ecology letters.

[72]  R. Solé,et al.  Perturbations and Indirect Effects in Complex Food Webs , 2005 .

[73]  D. Dudley Williams,et al.  The Importance of Temporal Resolution in Food Web Analysis: Evidence from a Detritus‐Based Stream , 1996 .

[74]  H. Charles J. Godfray,et al.  Experimental evidence for apparent competition in a tropical forest food web , 2004, Nature.

[75]  Pedro Jordano,et al.  Patterns of Mutualistic Interactions in Pollination and Seed Dispersal: Connectance, Dependence Asymmetries, and Coevolution , 1987, The American Naturalist.

[76]  A. Huryn,et al.  Food web structure and function in two arctic streams with contrasting disturbance regimes , 2006 .

[77]  G. Woodward,et al.  Differential vulnerability of prey to an invading top predator: integrating field surveys and laboratory experiments , 2002 .

[78]  Teja Tscharntke,et al.  Habitat modification alters the structure of tropical host–parasitoid food webs , 2007, Nature.

[79]  L. Harder,et al.  The Energy Cost of Bee Pollination for Pontederia cordata (Pontederiaceae) , 1992 .

[80]  Guy Woodward,et al.  Invasion of a stream food web by a new top predator , 2001 .

[81]  D. Reuman,et al.  Estimating Relative Energy Fluxes Using the Food Web, Species Abundance, and Body Size , 2005 .

[82]  Stephen R. Carpenter,et al.  Ecological community description using the food web, species abundance, and body size , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[83]  H. Godfray,et al.  Body sizes of hosts and parasitoids in individual feeding relationships. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[84]  S. Hall,et al.  Food webs: theory and reality , 1993 .

[85]  Owen L Petchey,et al.  Size, foraging, and food web structure , 2008, Proceedings of the National Academy of Sciences.

[86]  G. Woodward,et al.  Macroecological patterns and niche structure in a new marine food web , 2008, Central European Journal of Biology.

[87]  C. Stern CONCLUDING REMARKS OF THE CHAIRMAN , 1950 .

[88]  Guy Woodward,et al.  Trophic trickles and cascades in a complex food web: impacts of a keystone predator on stream community structure and ecosystem processes , 2008 .

[89]  S. Carpenter,et al.  Catastrophic regime shifts in ecosystems: linking theory to observation , 2003 .

[90]  C. Fonseca,et al.  Asymmetries, compartments and null interactions in an Amazonian ant-plant community , 1996 .

[91]  Food plant selection by stick insects (Phasmida) in a Bornean rain forest , 2005, Journal of Tropical Ecology.

[92]  L. Lehman,et al.  A family of agent based models , 2003, IEMC '03 Proceedings. Managing Technologically Driven Organizations: The Human Side of Innovation and Change (IEEE Cat. No.03CH37502).

[93]  Jordi Bascompte,et al.  Non-random coextinctions in phylogenetically structured mutualistic networks , 2007, Nature.

[94]  H. Godfray,et al.  Structure of a diverse tropical forest insect–parasitoid community , 2002 .

[95]  Martin G. Everett,et al.  Network analysis of 2-mode data , 1997 .

[96]  Ignasi Bartomeus,et al.  Contrasting effects of invasive plants in plant–pollinator networks , 2008, Oecologia.

[97]  Neo D. Martinez,et al.  Improving Food Webs , 1993 .

[98]  R. Paine Road Maps of Interactions or Grist for Theoretical Development , 1988 .

[99]  J Memmott,et al.  Infiltration of a Hawaiian Community by Introduced Biological Control Agents , 2001, Science.

[100]  B. Krasnov,et al.  Species abundance and the distribution of specialization in host–parasite interaction networks , 2005 .

[101]  Louis-Félix Bersier,et al.  Sampling effects and the robustness of quantitative and qualitative food-web descriptors. , 2004, Journal of theoretical biology.

[102]  P. Klinkhamer,et al.  Size constraints and flower abundance determine the number of interactions in a plant /flower visitor web , 2006 .

[103]  G. Woodward,et al.  Body‐size determinants of niche overlap and intraguild predation within a complex food web , 2002 .

[104]  Jonathan M. Chase,et al.  Trophic cascades across ecosystems , 2005, Nature.

[105]  A Sih,et al.  Emergent impacts of multiple predators on prey. , 1998, Trends in ecology & evolution.

[106]  John Harte,et al.  Response of complex food webs to realistic extinction sequences. , 2007, Ecology.

[107]  S. Strogatz Exploring complex networks , 2001, Nature.

[108]  Neo D. Martinez,et al.  Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web , 2000 .

[109]  Guy Woodward,et al.  Biodiversity, ecosystem functioning and food webs in fresh waters: assembling the jigsaw puzzle , 2009 .

[110]  Michiel Rutgers,et al.  Allometry, biocomplexity, and web topology of hundred agro-environments in The Netherlands , 2006 .

[111]  J. B. Wallace,et al.  TROPHIC BASIS OF PRODUCTION AMONG RIVERINE CADDISFLIES: IMPLICATIONS FOR FOOD WEB ANALYSIS , 1997 .

[112]  Joel E. Cohen,et al.  Interaction strengths in food webs: issues and opportunities , 2004 .

[113]  R. May Food webs. , 1983, Science.

[114]  P. Asprelli,et al.  THE GEOGRAPHIC MOSAIC OF COEVOLUTION , 2007 .

[115]  Johan van de Koppel,et al.  Reconciling complexity with stability in naturally assembling food webs , 2007, Nature.

[116]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[117]  D. Schemske,et al.  Geographic patterns in plant-pollinator mutualistic networks: Comment , 2004 .

[118]  Lynn V. Dicks,et al.  Compartmentalization in plant–insect flower visitor webs , 2002 .

[119]  Nils Blüthgen,et al.  Specialization, Constraints, and Conflicting Interests in Mutualistic Networks , 2007, Current Biology.

[120]  Jordi Bascompte,et al.  Ecological networks, nestedness and sampling effort , 2007 .

[121]  Peter J. Morin,et al.  Environmental warming alters food-web structure and ecosystem function , 1999, Nature.

[122]  M. Pascual,et al.  Ecological networks : Linking structure to dynamics in food webs , 2006 .

[123]  Lars Chittka,et al.  Generalization in Pollination Systems, and Why it Matters , 1996 .

[124]  Raymond L. Lindeman The trophic-dynamic aspect of ecology , 1942 .

[125]  G. Bell,et al.  The evolution of trophic structure , 2007, Heredity.

[126]  Juan M Morales,et al.  Invasive Mutualists Erode Native Pollination Webs , 2008, PLoS biology.

[127]  M. Ledger,et al.  The ecology of acidification and recovery: changes in herbivore-algal food web linkages across a stream pH gradient. , 2005, Environmental pollution.

[128]  Bradford A. Hawkins,et al.  EFFECTS OF SAMPLING EFFORT ON CHARACTERIZATION OF FOOD-WEB STRUCTURE , 1999 .

[129]  R. Peters The Ecological Implications of Body Size , 1983 .

[130]  H. Godfray,et al.  Food web structure of three guilds of natural enemies: predators, parasitoids and pathogens of aphids. , 2008, The Journal of animal ecology.

[131]  Neo D. Martinez,et al.  Simple rules yield complex food webs , 2000, Nature.

[132]  John L. Orrock,et al.  Predator hunting mode and habitat domain alter nonconsumptive effects in predator-prey interactions. , 2007, Ecology.

[133]  ROBERT M. MAY,et al.  Will a Large Complex System be Stable? , 1972, Nature.

[134]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[135]  Gueorgi Kossinets Effects of missing data in social networks , 2006, Soc. Networks.

[136]  Stuart L. Pimm,et al.  Food web design and the effect of species deletion , 1980 .

[137]  L. Chittka,et al.  Successful invasion of a floral market , 2001, Nature.

[138]  J. Montoya,et al.  Small world patterns in food webs. , 2002, Journal of theoretical biology.

[139]  Neo D. Martinez Constant Connectance in Community Food Webs , 1992, The American Naturalist.

[140]  Owen L. Petchey,et al.  Foraging biology predicts food web complexity , 2006, Proceedings of the National Academy of Sciences.

[141]  A. Frid,et al.  State-dependent risk-taking by green sea turtles mediates top-down effects of tiger shark intimidation in a marine ecosystem. , 2007, The Journal of animal ecology.

[142]  Jordi Bascompte,et al.  Interaction strength combinations and the overfishing of a marine food web. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[143]  Carlos J. Melián,et al.  The nested assembly of plant–animal mutualistic networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[144]  G. Woodward,et al.  Body Size: Body size and predatory interactions in freshwaters: scaling from individuals to communities , 2007 .

[145]  Neo D. Martinez,et al.  Scaling up keystone effects from simple to complex ecological networks , 2005 .

[146]  Lloyd Goldwasser,et al.  SAMPLING EFFECTS AND THE ESTIMATION OF FOOD‐WEB PROPERTIES , 1997 .

[147]  A. McKane,et al.  Abundance-body size relationships: the roles of metabolism and population dynamics. , 2008, The Journal of animal ecology.

[148]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[149]  Louis-Félix Bersier,et al.  QUANTITATIVE DESCRIPTORS OF FOOD-WEB MATRICES , 2002 .

[150]  Johan van de Koppel,et al.  Reconciling complexity with stability in naturally assembling food webs , 2009, Nature.

[151]  A. Robertson,et al.  THE IMPORTANCE OF MEIOFAUNA IN FOOD WEBS: EVIDENCE FROM AN ACID STREAM , 2002 .

[152]  Ulrich Brose,et al.  Allometric degree distributions facilitate food-web stability , 2007, Nature.

[153]  A. Hastings,et al.  Weak trophic interactions and the balance of nature , 1998, Nature.

[154]  Nico Blüthgen,et al.  Bottom‐up control and co‐occurrence in complex communities: honeydew and nectar determine a rainforest ant mosaic , 2004 .

[155]  R. Macarthur Fluctuations of Animal Populations and a Measure of Community Stability , 1955 .

[156]  Pedro Jordano,et al.  GEOGRAPHIC PATTERNS IN PLANT–POLLINATOR MUTUALISTIC NETWORKS , 2002 .

[157]  R. Briers,et al.  Body Size: The Structure and Function of Aquatic Ecosystems , 2009 .

[158]  H Charles J Godfray,et al.  Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. , 2006, Annual review of entomology.

[159]  Jordi Bascompte,et al.  Asymmetric Coevolutionary Networks Facilitate Biodiversity Maintenance , 2006, Science.

[160]  K. B. Suttle IDEAS A ND PERSPECTIVES Pollinators as mediators of top-down effects on plants , 2003 .

[161]  Ø. Totland,et al.  Do alien plant invasions really affect pollination success in native plant species , 2007 .

[162]  A. Neutel,et al.  Energetics, Patterns of Interaction Strengths, and Stability in Real Ecosystems , 1995, Science.

[163]  G. Pasteur,et al.  A Classificatory Review of Mimicry Systems , 1982 .

[164]  M. Uriarte,et al.  Experimental evidence for a behavior-mediated trophic cascade in a terrestrial food chain. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[165]  John H. Lawton,et al.  ARE FOOD WEBS DIVIDED INTO COMPARTMENTS , 1980 .

[166]  J. Bascompte,et al.  The modularity of pollination networks , 2007, Proceedings of the National Academy of Sciences.

[167]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[168]  M. Scheffer,et al.  A Theory for Cyclic Shifts between Alternative States in Shallow Lakes , 2007, Ecosystems.

[169]  N. Blüthgen,et al.  Measuring specialization in species interaction networks , 2006, BMC Ecology.

[170]  James R. Karr,et al.  The food web of of a tropical rain forest , 1997 .

[171]  Jochen Fründ,et al.  What do interaction network metrics tell us about specialization and biological traits? , 2008, Ecology.

[172]  J. E. Cohen,et al.  Food webs and niche space. , 1979, Monographs in population biology.

[173]  S. Carpenter,et al.  Catastrophic shifts in ecosystems , 2001, Nature.

[174]  K. McCann The diversity–stability debate , 2000, Nature.