A Mesh Cladding-Structured Sr-Doped Lafeo3/Bi4o5br2 Photocatalyst: Integration of Oxygen Vacanices and Z-Scheme Heterojunction Toward Enhanced Co2 Photoreduction

[1]  Jingjing Xu,et al.  Dual Z-scheme Bi3TaO7/Bi2S3/SnS2 photocatalyst with high performance for Cr(VI) reduction and TC degradation under visible light irradiation , 2022, Rare Metals.

[2]  Hui Ling Tan,et al.  Facet-dependent Spatial Charge Separation with Rational Co-catalyst Deposition on BiVO4 , 2022, Materials Today Energy.

[3]  Zhimin Jiang,et al.  Enhanced photocatalytic H2 evolution based on a Ti3C2/Zn0.7Cd0.3S/Fe2O3 Ohmic/S-scheme hybrid heterojunction with cascade 2D coupling interfaces , 2022, Chemical Engineering Journal.

[4]  S. Jiang,et al.  Layered g-C3N4/TiO2 nanocomposites for efficient photocatalytic water splitting and CO2 reduction: A review , 2021, Materials Today Energy.

[5]  Wei Wang,et al.  Prussian blue conjugated ZnO nanoparticles for near-infrared light-responsive photocatalysis , 2021, Materials Today Energy.

[6]  Xin Li,et al.  Tracking S‐Scheme Charge Transfer Pathways in Mo 2 C/CdS H 2 ‐Evolution Photocatalysts , 2021 .

[7]  Jiaguo Yu,et al.  In-situ growth of few-layer graphene on ZnO with intimate interfacial contact for enhanced photocatalytic CO2 reduction activity , 2021 .

[8]  S. Feng,et al.  Defect engineering of photocatalysts for solar-driven conversion of CO2 into valuable fuels , 2021 .

[9]  P. D. Tran,et al.  Decoration of AgOx hole collector to boost photocatalytic water oxidation activity of BiVO4 photoanode , 2021 .

[10]  Xi-wen Song,et al.  Enhancing CO2 Catalytic Adsorption on an Fe Nanoparticle-Decorated LaSrFeO4 + δ Cathode for CO2 Electrolysis. , 2021, ACS applied materials & interfaces.

[11]  T. Maiyalagan,et al.  Carbon dots and Bi4O5Br2 adhered on TiO2 nanoparticles: Impressively boosted photocatalytic efficiency for removal of pollutants under visible light , 2020 .

[12]  Jun Ma,et al.  Enhanced activation of peroxymonosulfate by Sr-doped LaFeO3 perovskite for Orange I degradation in the water , 2020 .

[13]  Jiaguo Yu,et al.  Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction , 2020, Nature Communications.

[14]  O. Terasaki,et al.  Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction , 2020, Nature.

[15]  R. Hou,et al.  Achieving strong chemical adsorption ability for efficient carbon dioxide electrolysis , 2020 .

[16]  F. Dong,et al.  SrTiO3/BiOI heterostructure: Interfacial charge separation, enhanced photocatalytic activity, and reaction mechanism , 2020, Chinese Journal of Catalysis.

[17]  K. H. Zhang,et al.  Increased activity in the oxygen evolution reaction by Fe4+-induced hole states in perovskite La1−xSrxFeO3 , 2020 .

[18]  Yihe Zhang,et al.  Macroscopic Spontaneous Polarization and Surface Oxygen Vacancies Collaboratively Boosting CO2 Photoreduction on BiOIO3 Single Crystals , 2020, Advanced materials.

[19]  S. Qiao,et al.  Atomic‐Level Reactive Sites for Semiconductor‐Based Photocatalytic CO2 Reduction , 2020, Advanced Energy Materials.

[20]  Jingjing Xu,et al.  Synthesis of LaFeO3/Bi3NbO7 p-n heterojunction photocatalysts with enhanced visible-light-responsive activity for photocatalytic reduction of Cr(Ⅵ) , 2020 .

[21]  Zongping Shao,et al.  Perovskite Oxide-Based Electrodes for High-Performance Photoelectrochemical Water Splitting: A Review. , 2020, Angewandte Chemie.

[22]  Xuefeng Zhu,et al.  Alkaline-earth elements (Ca, Sr and Ba) doped LaFeO3-δ cathodes for CO2 electroreduction , 2019 .

[23]  J. Xiong,et al.  Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity. , 2019, Journal of hazardous materials.

[24]  Licheng Sun,et al.  Dye-sensitized LaFeO3 photocathode for solar-driven H2 generation. , 2019, Chemical communications.

[25]  Chade Lv,et al.  A bismuth rich hollow Bi4O5Br2 photocatalyst enables dramatic CO2 reduction activity , 2019, Nano Energy.

[26]  Zhonghua Zhang,et al.  Iron and Nickel Mixed Oxides Derived From NiIIFeII-PBA for Oxygen Evolution Electrocatalysis , 2019, Front. Chem..

[27]  F. Gao,et al.  Interfacial coupling effects in g-C3N4/SrTiO3 nanocomposites with enhanced H2 evolution under visible light irradiation , 2019, Applied Catalysis B: Environmental.

[28]  Yihe Zhang,et al.  Three-in-One Oxygen Vacancies: Whole Visible-Spectrum Absorption, Efficient Charge Separation, and Surface Site Activation for Robust CO2 Photoreduction. , 2019, Angewandte Chemie.

[29]  Li Wang,et al.  Ultrathin Bi4O5Br2 nanosheets for selective photocatalytic CO2 conversion into CO , 2019, Chemical Engineering Journal.

[30]  Jiangyan Wang,et al.  Constructing SrTiO3 -TiO2 Heterogeneous Hollow Multi-shelled Structures for Enhanced Solar Water Splitting. , 2018, Angewandte Chemie.

[31]  Duihai Tang,et al.  Sol‐Gel Preparation of Perovskite Oxides Using Ethylene Glycol and Alcohol Mixture as Complexant and Its Catalytic Performances for CO Oxidation , 2018, ChemistrySelect.

[32]  Cheng Yan,et al.  Defect-Rich Bi12 O17 Cl2 Nanotubes Self-Accelerating Charge Separation for Boosting Photocatalytic CO2 Reduction. , 2018, Angewandte Chemie.

[33]  Zongping Shao,et al.  Systematic Study of Oxygen Evolution Activity and Stability on La1- xSr xFeO3-δ Perovskite Electrocatalysts in Alkaline Media. , 2018, ACS applied materials & interfaces.

[34]  Misook Kang,et al.  Surface modification of layered perovskite Sr2TiO4 for improved CO2 photoreduction with H2O to CH4 , 2017, Scientific Reports.

[35]  Geoffrey I N Waterhouse,et al.  Recent Progress in Photocatalytic CO2Reduction Over Perovskite Oxides , 2017 .

[36]  Hua-ming Li,et al.  2D-2D stacking of graphene-like g-C 3 N 4 /Ultrathin Bi 4 O 5 Br 2 with matched energy band structure towards antibiotic removal , 2017 .

[37]  Changhai Liu,et al.  Constructing a novel p-n heterojunction photocatalyst LaFeO3/g-C3N4 with enhanced visible-light-driven photocatalytic activity , 2017 .

[38]  Pingquan Wang,et al.  Synthesis of hierarchical bismuth-rich Bi4O5BrxI2-x solid solutions for enhanced photocatalytic activities of CO2 conversion and Cr(VI) reduction under visible light , 2017 .

[39]  Xiao‐Yu Yang,et al.  Probing effective photocorrosion inhibition and highly improved photocatalytic hydrogen production on monodisperse PANI@CdS core-shell nanospheres , 2016 .

[40]  B. Shan,et al.  Enhanced charge transport of LaFeO3 via transition metal (Mn, Co, Cu) doping for visible light photoelectrochemical water oxidation , 2015 .

[41]  Y. Ikuhara,et al.  Assessment of Strain-Generated Oxygen Vacancies Using SrTiO₃ Bicrystals. , 2015, Nano letters.

[42]  Jinlong Gong,et al.  Tungsten Oxide Single Crystal Nanosheets for Enhanced Multichannel Solar Light Harvesting , 2015, Advanced materials.

[43]  Xing Zhang,et al.  Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway , 2015, Science.

[44]  Tsunehiro Tanaka,et al.  Photocatalytic conversion of CO2 in water over Ag-modified La2Ti2O7 , 2015 .

[45]  Ying Yu,et al.  Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4Br under visible light , 2013 .

[46]  Ning Zhang,et al.  Self-doped SrTiO3−δ photocatalyst with enhanced activity for artificial photosynthesis under visible light , 2011 .