About a decomposition of the group Zpq, where p and q are distinct odd primes

In this paper we are interested in finding a partition of Z"n such that the component sets satisfy two properties: the first one says that the double of each element of every set is congruent modulo n with the consecutive element of the same set; the second property states that there exist two distinct elements in each set such that their sum modulo n belongs to the successive set. What is this decomposition useful for? It permits one to find the structure of a complete hypergroup H in some particular cases.

[1]  Jianming Zhan,et al.  On fuzzy isomorphism theorems of hypermodules , 2007, Soft Comput..

[2]  Šárka Hošková,et al.  Discrete transformation hypergroups and transformation hypergroups with phase tolerance space , 2008, Discret. Math..

[3]  F. Marty Sur une generalization de la notion de groupe , 1934 .

[4]  Irina Cristea,et al.  On the fuzzy grade of hypergroups , 2008, Fuzzy Sets Syst..

[5]  Jianming Zhan,et al.  A new view of fuzzy hyperquasigroups , 2009, J. Intell. Fuzzy Syst..

[6]  Bijan Davvaz,et al.  Atanassov's intuitionistic fuzzy grade of hypergroups , 2010, Inf. Sci..

[7]  I. Cristea COMPLETE HYPERGROUPS, 1-HYPERGROUPS AND FUZZY SETS , 2002 .

[8]  Mohammad Reza Darafsheh,et al.  A decomposition of the cyclic groups of order p and p2, where p is a prime number , 2010, J. Intell. Fuzzy Syst..

[9]  D. H. Lehmer On Fermat’s quotient, base two , 1981 .

[10]  P. Ribenboim The new book of prime number records , 1996 .

[11]  I. Cristea About the fuzzy grade of the direct product of two hypergroupoids , 2010 .

[12]  Irina Cristea,et al.  FUZZY SETS AND NON COMPLETE 1-HYPERGROUPS ∗ , 2005 .

[13]  Bijan Davvaz,et al.  Atanassov's intuitionistic (S,T)-fuzzy n-ary sub-hypergroups and their properties , 2009, Inf. Sci..

[14]  W. Dudek,et al.  Interval Valued Intuitionistic (S, T)–fuzzy Hv–submodules , 2006, math/0605714.

[15]  B. Davvaz,et al.  A New View on Fuzzy Hypermodules , 2007 .

[16]  Bijan Davvaz,et al.  Fuzzy n-ary subpolygroups , 2009, Comput. Math. Appl..

[17]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[18]  Karl Dilcher,et al.  A search for Wieferich and Wilson primes , 1997, Math. Comput..

[19]  Irina Cristea,et al.  On the Fuzzy Subhypergroups of Some Particular Complete Hypergroups (I) , 2009 .

[20]  Bijan Davvaz,et al.  Roughness in n , 2008, Inf. Sci..