Projective synchronization of new hyperchaotic system with fully unknown parameters

Projective synchronization of new hyperchaotic Newton–Leipnik system with fully unknown parameters is investigated in this paper. Based on Lyapunov stability theory, a new adaptive controller with parameter update law is designed to projective synchronize between two hyperchaotic systems asymptotically and globally. Basic bifurcation analysis of the new system is investigated by means of Lyapunov exponent spectrum and bifurcation diagrams. It is found that the new hyperchaotic system possesses two positive Lyapunov exponents within a wide range of parameters. Numerical simulations on the hyperchaotic Newton–Leipnik system are used to verify the theoretical results.

[1]  Jian Huang,et al.  Chaos synchronization between two novel different hyperchaotic systems with unknown parameters , 2008 .

[2]  王发强,et al.  Hyperchaos evolved from the Liu chaotic system , 2006 .

[3]  Lixin Tian,et al.  Bifurcation analysis and linear control of the Newton–Leipnik system , 2006 .

[4]  J. M. González-Miranda,et al.  Amplification and displacement of chaotic attractors by means of unidirectional chaotic driving , 1998 .

[5]  Guohui Li Modified projective synchronization of chaotic system , 2007 .

[6]  R. Leipnik,et al.  Double strange attractors in rigid body motion with linear feedback control , 1981 .

[7]  M. el-Dessoky Anti-synchronization of four scroll attractor with fully unknown parameters , 2010 .

[8]  Daolin Xu,et al.  Criteria for the occurrence of projective synchronization in chaotic systems of arbitrary dimension , 2002 .

[9]  James A. Yorke,et al.  Preturbulence: A regime observed in a fluid flow model of Lorenz , 1979 .

[10]  Lee Sun-Jin From Chaos to Order , 2011 .

[11]  Guanrong Chen,et al.  Hyperchaos evolved from the generalized Lorenz equation , 2005, Int. J. Circuit Theory Appl..

[12]  Dibakar Ghosh,et al.  Linear observer based projective synchronization in delay Rössler system , 2010 .

[13]  L. Chua,et al.  Hyper chaos: Laboratory experiment and numerical confirmation , 1986 .

[14]  Simin Yu,et al.  Generating hyperchaotic Lü attractor via state feedback control , 2006 .

[15]  Ronnie Mainieri,et al.  Projective Synchronization In Three-Dimensional Chaotic Systems , 1999 .

[16]  Hendrik Richter Controlling chaotic systems with multiple strange attractors , 2002 .

[17]  Dibakar Ghosh,et al.  Generalized projective synchronization in time-delayed systems: nonlinear observer approach. , 2009, Chaos.

[18]  Guanrong Chen,et al.  Generating Hyperchaos via State Feedback Control , 2005, Int. J. Bifurc. Chaos.

[19]  Hsien-Keng Chen,et al.  Anti-control of chaos in rigid body motion , 2004 .

[20]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[21]  O. Rössler An equation for hyperchaos , 1979 .

[22]  P. Saha,et al.  ON THE STUDY OF DELAY FEEDBACK CONTROL AND ADAPTIVE SYNCHRONIZATION NEAR SUB-CRITICAL HOPF BIFURCATION , 2008 .