Cooperative particle swarm optimization for multiobjective transportation planning

The paper presents a multiobjective optimization problem that considers distributing multiple kinds of products from multiple sources to multiple targets. The problem is of high complexity and is difficult to solve using classical heuristics. We propose for the problem a hierarchical cooperative optimization approach that decomposes the problem into low-dimensional subcomponents, and applies Pareto-based particle swarm optimization (PSO) method to the main problem and the subproblems alternately. In particular, our approach uses multiple sub-swarms to evolve the sub-solutions concurrently, controls the detrimental effect of variable correlation by reducing the subproblem objectives, and brings together the results of the sub-swarms to construct effective solutions of the original problem. Computational experiment demonstrates that the proposed algorithm is robust and scalable, and outperforms some state-of-the-art constrained multiobjective optimization algorithms on a set of test problems.

[1]  Kin Keung Lai,et al.  A fuzzy approach to the multiobjective transportation problem , 2000, Comput. Oper. Res..

[2]  Erkam Uzun,et al.  A real time traffic simulator utilizing an adaptive fuzzy inference mechanism by tuning fuzzy parameters , 2011, Applied Intelligence.

[3]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[4]  Günther F. Rühe Algorithmic Aspects of Flows in Networks , 1991 .

[5]  Yinyu Ye,et al.  A Short-Cut Potential Reduction Algorithm for Linear Programming , 1993 .

[6]  Chi-Chun Lo,et al.  A multiobjective hybrid genetic algorithm for the capacitated multipoint network design problem , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[7]  Beatrice M. Ombuki-Berman,et al.  Multi-Objective Genetic Algorithms for Vehicle Routing Problem with Time Windows , 2006, Applied Intelligence.

[8]  Maurice Clerc,et al.  MO-TRIBES, an adaptive multiobjective particle swarm optimization algorithm , 2011, Comput. Optim. Appl..

[9]  E. E. Ammar,et al.  Study on multiobjective transportation problem with fuzzy numbers , 2005, Appl. Math. Comput..

[10]  Jae Hyung Cho,et al.  An intermodal transport network planning algorithm using dynamic programming—A case study: from Busan to Rotterdam in intermodal freight routing , 2010, Applied Intelligence.

[11]  Antonio Iovanella,et al.  Heuristic Multiobjective Search for Hazmat Transportation Problems , 2011, CAEPIA.

[12]  Mengjie Zhang,et al.  A memetic particle swarm optimization for constrained multi-objective optimization problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[13]  Jaroslav Hájek,et al.  A new mechanism for maintaining diversity of Pareto archive in multi-objective optimization , 2010, Adv. Eng. Softw..

[14]  Sanghamitra Bandyopadhyay,et al.  Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients , 2007, Inf. Sci..

[15]  Stephen C. H. Leung,et al.  A non-linear goal programming model and solution method for the multi-objective trip distribution problem in transportation engineering , 2007 .

[16]  Xiang Li,et al.  BSTBGA: A hybrid genetic algorithm for constrained multi-objective optimization problems , 2013, Comput. Oper. Res..

[17]  Satya Prakash,et al.  An efficient heuristic for multi-objective bulk transportation problem , 2009, 2009 International Conference on Computers & Industrial Engineering.

[18]  J. Ringuest,et al.  Interactive solutions for the linear multiobjective transportation problem , 1987 .

[19]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[20]  Kay Chen Tan,et al.  A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design , 2010, Eur. J. Oper. Res..

[21]  Xiaodong Li,et al.  A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization , 2003, GECCO.

[22]  Shengyong Chen,et al.  Fuzzy Combinatorial Optimization With Multiple Ranking Criteria:A Staged Tabu Search Faramework,,2012 , 2012 .

[23]  Beatrice M. Ombuki-Berman,et al.  Dynamic vehicle routing using genetic algorithms , 2007, Applied Intelligence.

[24]  Andrew W. H. Ip,et al.  Design of an improved quantum-inspired evolutionary algorithm for a transportation problem in logistics systems , 2011, Journal of Intelligent Manufacturing.

[25]  Shengyong Chen,et al.  Modeling of Biological Intelligence for SCM System Optimization , 2011, Comput. Math. Methods Medicine.

[26]  N. K. Kwak,et al.  A Linear Goal Programming Model for Trans-Shipment Problems with Flexible Supply and Demand Constraints , 1994 .

[27]  Massimiliano Caramia,et al.  A heuristic approach to long-haul freight transportation with multiple objective functions , 2009 .

[28]  Waiel F. Abd El-Wahed,et al.  A hybrid fuzzy-goal programming approach to multiple objective decision making problems , 2001, Fuzzy Sets Syst..

[29]  Z. Michalewicz,et al.  A genetic algorithm for the linear transportation problem , 1991, IEEE Trans. Syst. Man Cybern..

[30]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[31]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[32]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[33]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[34]  Hyung Rim Choi,et al.  Development of a maritime transportation planning support system for car carriers based on genetic algorithm , 2012, Applied Intelligence.

[35]  Abd Allah A. Mousa,et al.  Using genetic algorithm and TOPSIS technique for multiobjective transportation problem: a hybrid approach , 2010, Int. J. Comput. Math..

[36]  Yujun Zheng,et al.  A new particle swarm optimization algorithm for fuzzy optimization of armored vehicle scheme design , 2012, Applied Intelligence.

[37]  M. Gen,et al.  Bicriteria transportation problem by hybrid genetic algorithm , 1998 .

[38]  Tien-Fu Liang,et al.  Interactive Multi-Objective Transportation Planning Decisions Using Fuzzy, Linear Programming , 2008, Asia Pac. J. Oper. Res..

[39]  Maria João Alves,et al.  Interactive decision support for multiobjective transportation problems , 1993 .

[40]  Hale Gonce Kocken,et al.  A Compensatory Approach to Multiobjective Linear Transportation Problem with Fuzzy Cost Coefficients , 2011 .

[41]  Waiel F. Abd El-Wahed,et al.  Interactive fuzzy goal programming for multi-objective transportation problems ☆ , 2006 .

[42]  Zhuhong Zhang,et al.  Immune optimization algorithm for constrained nonlinear multiobjective optimization problems , 2007, Appl. Soft Comput..

[43]  H. Edwin Romeijn,et al.  The stochastic transportation problem with single sourcing , 2011, Eur. J. Oper. Res..

[44]  Der-Horng Lee,et al.  Multiobjective Vehicle Routing and Scheduling Problem with Time Window Constraints in Hazardous Material Transportation , 2005 .

[45]  Shinn-Ying Ho,et al.  Intelligent Particle Swarm Optimization in Multi-objective Problems , 2006, PAKDD.

[46]  Ananda Sanagavarapu Mohan,et al.  Micro-particle swarm optimizer for solving high dimensional optimization problems (muPSO for high dimensional optimization problems) , 2006, Appl. Math. Comput..

[47]  Andries Petrus Engelbrecht,et al.  Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[48]  Amit Kumar,et al.  Method for solving unbalanced fully fuzzy multi-objective solid minimal cost flow problems , 2012, Applied Intelligence.

[49]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[50]  Abdullah A. Mousa,et al.  Efficient Evolutionary Algorithm for solving Multiobjective Transportation Problem , 2010 .

[51]  M. N. Vrahatis,et al.  Particle swarm optimization method in multiobjective problems , 2002, SAC '02.

[52]  A. A. Mousa,et al.  Efficient Multiobjective Genetic Algorithm for Solving Transportation, Assignment, and Transshipment Problems , 2012 .

[53]  Preetvanti Singh,et al.  The multiple objective time transportation problem with additional restrictions , 2003, Eur. J. Oper. Res..

[54]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[55]  Mitsuo Gen,et al.  Spanning tree-based genetic algorithm for bicriteria transportation problem , 1998 .