Fuzzy K-means clustering models for triangular fuzzy time trajectories

We focus our attention on the classification of fuzzy time trajectories with triangular membership function, described by a given set of individuals. To this purpose, we adopt a fullyinformational approach, explicitly recognizing the informational nature shared by the ingredients of the classification procedure: the observed data (Empirical Information) and the classification model (Theoretical Information). In particular, by supposing that the informational paradigm has a fuzzy nature, we suggest three fuzzy clustering models allowing the classification of the triangular fuzzy time trajectories, based on the analysis of the cross sectional and/or longitudinal characteristics of their components (centers and spreads). Two applicative examples are illustrated.

[1]  Phil Diamond,et al.  Fuzzy least squares , 1988, Inf. Sci..

[2]  Pierpaolo D'Urso,et al.  The Geometric Approach to the Comparison of Multivariate Time Trajectories , 2001 .

[3]  Renato Coppi,et al.  A theoretical framework for data mining: the informational paradigm , 2002 .

[4]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[6]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[7]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[8]  H. Zimmermann,et al.  Fuzzy Set Theory and Its Applications , 1993 .

[9]  Stephen Watson,et al.  Set Theory and its Applications , 1989 .

[10]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[11]  P. Anand Raj,et al.  Ranking alternatives with fuzzy weights using maximizing set and minimizing set , 1999, Fuzzy Sets Syst..

[12]  Pierpaolo D'Urso,et al.  Dissimilarities Between Trajectories of a Three-Way Longitudinal Data Set , 1998 .

[13]  P. Groenen,et al.  Data analysis, classification, and related methods , 2000 .

[14]  CoppiRenato A theoretical framework for data mining , 2002 .

[15]  P. Groenen,et al.  Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima , 1997 .

[16]  Pierpaolo D'Urso,et al.  Fuzzy Time Arrays and Dissimilarity Measures For Fuzzy Time Trajectories , 2000 .

[17]  A C C Gibbs,et al.  Data Analysis , 2009, Encyclopedia of Database Systems.

[18]  Pierpaolo D'Urso,et al.  Three-way fuzzy clustering models for LR fuzzy time trajectories , 2003, Comput. Stat. Data Anal..