Distinct Hippocampal Pathways Mediate Dissociable Roles of Context in Memory Retrieval

[1]  P. D. Dodson,et al.  Hippocampal Theta Input to the Amygdala Shapes Feedforward Inhibition to Gate Heterosynaptic Plasticity , 2015, Neuron.

[2]  Andreas Lüthi,et al.  Neuronal circuits for fear and anxiety , 2015, Nature Reviews Neuroscience.

[3]  S. Ciocchi,et al.  Selective information routing by ventral hippocampal CA1 projection neurons , 2015, Science.

[4]  Attila Losonczy,et al.  Parvalbumin-Positive Basket Cells Differentiate among Hippocampal Pyramidal Cells , 2014, Neuron.

[5]  Johannes J. Letzkus,et al.  Amygdala interneuron subtypes control fear learning through disinhibition , 2014, Nature.

[6]  G. Urcelay,et al.  The functions of contexts in associative learning , 2014, Behavioural Processes.

[7]  M. Penzo,et al.  Fear Conditioning Potentiates Synaptic Transmission onto Long-Range Projection Neurons in the Lateral Subdivision of Central Amygdala , 2014, The Journal of Neuroscience.

[8]  Johannes J. Letzkus,et al.  Long-Range Connectivity Defines Behavioral Specificity of Amygdala Neurons , 2014, Neuron.

[9]  A. Lüthi,et al.  Ex vivo dissection of optogenetically activated mPFC and hippocampal inputs to neurons in the basolateral amygdala: implications for fear and emotional memory , 2014, Front. Behav. Neurosci..

[10]  Nikolaos Karalis,et al.  Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression , 2013, Nature.

[11]  Botond Roska,et al.  The First Stage of Cardinal Direction Selectivity Is Localized to the Dendrites of Retinal Ganglion Cells , 2013, Neuron.

[12]  Fumitaka Osakada,et al.  Design and generation of recombinant rabies virus vectors , 2013, Nature Protocols.

[13]  K. Luan Phan,et al.  The contextual brain: implications for fear conditioning, extinction and psychopathology , 2013, Nature Reviews Neuroscience.

[14]  N. Canteras,et al.  The many paths to fear , 2012, Nature Reviews Neuroscience.

[15]  J. Kim,et al.  Hippocampal and Prefrontal Projections to the Basal Amygdala Mediate Contextual Regulation of Fear after Extinction , 2011, The Journal of Neuroscience.

[16]  K. Deisseroth,et al.  Dynamics of Retrieval Strategies for Remote Memories , 2011, Cell.

[17]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[18]  C. Robinet,et al.  Oxytocin Selectively Gates Fear Responses Through Distinct Outputs from the Central Amygdala , 2011, Science.

[19]  Nathan C. Klapoetke,et al.  A High-Light Sensitivity Optical Neural Silencer: Development and Application to Optogenetic Control of Non-Human Primate Cortex , 2010, Front. Syst. Neurosci..

[20]  Michael B. Stadler,et al.  Encoding of conditioned fear in central amygdala inhibitory circuits , 2010, Nature.

[21]  K. Deisseroth,et al.  Molecular and Cellular Approaches for Diversifying and Extending Optogenetics , 2010, Cell.

[22]  G. Urcelay,et al.  Two roles of the context in Pavlovian fear conditioning. , 2010, Journal of experimental psychology. Animal behavior processes.

[23]  Mark J. Schnitzer,et al.  Automated Analysis of Cellular Signals from Large-Scale Calcium Imaging Data , 2009, Neuron.

[24]  Y. Humeau,et al.  Amygdala Inhibitory Circuits and the Control of Fear Memory , 2009, Neuron.

[25]  A. Lüthi,et al.  Switching on and off fear by distinct neuronal circuits , 2008, Nature.

[26]  D. Saur,et al.  A Cre-loxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors , 2008, Proceedings of the National Academy of Sciences.

[27]  S. Nelson,et al.  Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. , 2007, Journal of neurophysiology.

[28]  L. Swanson,et al.  Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex , 2007, Brain Research Reviews.

[29]  Stephen Maren,et al.  Hippocampal involvement in contextual modulation of fear extinction , 2007, Hippocampus.

[30]  R. Vertes,et al.  Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat , 2007, Brain Structure and Function.

[31]  D. Surmeier,et al.  D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons , 2007, Trends in Neurosciences.

[32]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[33]  M. Bouton,et al.  Contextual and Temporal Modulation of Extinction: Behavioral and Biological Mechanisms , 2006, Biological Psychiatry.

[34]  T. Kishi,et al.  Topographical projection from the hippocampal formation to the amygdala: A combined anterograde and retrograde tracing study in the rat , 2006, The Journal of comparative neurology.

[35]  Jennifer A. Hobin,et al.  Ventral hippocampal muscimol disrupts context‐specific fear memory retrieval after extinction in rats , 2006, Hippocampus.

[36]  T. Crombleholme,et al.  Optimized large-scale production of high titer lentivirus vector pseudotypes. , 2004, Journal of virological methods.

[37]  G. Quirk,et al.  Neuronal signalling of fear memory , 2004, Nature Reviews Neuroscience.

[38]  M. Bouton Context and behavioral processes in extinction. , 2004, Learning & memory.

[39]  Stephen Maren,et al.  Hippocampus and Pavlovian fear conditioning in rats: muscimol infusions into the ventral, but not dorsal, hippocampus impair the acquisition of conditional freezing to an auditory conditional stimulus. , 2004, Behavioral neuroscience.

[40]  Jennifer A. Hobin,et al.  Context-Dependent Neuronal Activity in the Lateral Amygdala Represents Fear Memories after Extinction , 2003, The Journal of Neuroscience.

[41]  P. Veinante,et al.  Branching Patterns of Central Amygdaloid Nucleus Efferents in the Rat , 2003 .

[42]  M. Bouton Context, ambiguity, and unlearning: sources of relapse after behavioral extinction , 2002, Biological Psychiatry.

[43]  L. Jarrard,et al.  The hippocampus and motivation revisited: appetite and activity , 2001, Behavioural Brain Research.

[44]  L. Swanson,et al.  Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems , 2001, Brain Research Reviews.

[45]  K. Kissa,et al.  Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[46]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[47]  L. Poellinger,et al.  A mouse model for adenovirus gene delivery , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[48]  A. Ylinen,et al.  Reciprocal Connections between the Amygdala and the Hippocampal Formation, Perirhinal Cortex, and Postrhinal Cortex in Rat: A Review , 2000, Annals of the New York Academy of Sciences.

[49]  Joseph E LeDoux Emotion Circuits in the Brain , 2000 .

[50]  J. Rawlins,et al.  Dissociating context and space within the hippocampus: effects of complete, dorsal, and ventral excitotoxic hippocampal lesions on conditioned freezing and spatial learning. , 1999, Behavioral neuroscience.

[51]  Stephen Maren Neurotoxic or electrolytic lesions of the ventral subiculum produce deficits in the acquisition and expression of Pavlovian fear conditioning in rats. , 1999, Behavioral neuroscience.

[52]  L. Swanson,et al.  What is the amygdala? , 1998, Trends in Neurosciences.

[53]  Joseph E LeDoux,et al.  Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala , 1997, Trends in Neurosciences.

[54]  M. Fanselow,et al.  Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulation in vivo , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  R. Dampney,et al.  Functional organization of central pathways regulating the cardiovascular system. , 1994, Physiological reviews.

[56]  M. Fanselow,et al.  Modality-specific retrograde amnesia of fear. , 1992, Science.

[57]  Joseph E LeDoux,et al.  Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. , 1992, Behavioral neuroscience.

[58]  Joseph E LeDoux,et al.  Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  M. Bouton,et al.  Analysis of the associative and occasion-setting properties of contexts participating in a Pavlovian discrimination. , 1986 .

[60]  L. Swanson,et al.  The organization of projections from the central nucleus of the amygdala to brainstem sites involved in central autonomic regulation: A combined retrograde transport-immunohistochemical study , 1984, Brain Research.

[61]  Michela Gallagher,et al.  Amygdala central nucleus lesions: Effect on heart rate conditioning in the rabbit , 1979, Physiology & Behavior.

[62]  J. Price,et al.  A description of the amygdaloid complex in the rat and cat with observations on intra‐amygdaloid axonal connections , 1978, The Journal of comparative neurology.

[63]  Wolfgang Maass,et al.  Brain Computation : , 2017 .

[64]  Andrew M. Poulos,et al.  The neuroscience of mammalian associative learning. , 2005, Annual review of psychology.

[65]  Stephen Maren Neurobiology of Pavlovian fear conditioning. , 2001, Annual review of neuroscience.

[66]  Michael Unser,et al.  A pyramid approach to subpixel registration based on intensity , 1998, IEEE Trans. Image Process..

[67]  Michael Davis,et al.  The role of the amygdala in fear and anxiety. , 1992, Annual review of neuroscience.