A new incompressibility discretization for a hybrid particle MAC grid representation with surface tension

We take a particle based approach to incompressible free surface flow motivated by the fact that an explicit representation of the interface geometry and internal deformations gives precise feedback to an implicit solver for surface tension. Methods that enforce incompressibility directly on the particles are typically numerically inefficient compared to those that utilize a background grid. However, background grid discretizations suffer from inaccuracy near the free surface where they do not properly capture the interface geometry. Therefore, our incompressibility discretization utilizes a particle based projection near the interface and a background MAC grid based projection for efficiency in the vast interior of the liquid domain - as well as a novel method for coupling these two disparate projections together. We show that the overall coupled elliptic solver is second order accurate, and remains second order accurate when used in conjunction with an appropriate temporal discretization for parabolic problems. A similar second order accurate discretization is derived when the MAC grid unknowns are located on faces (as opposed to cell centers) so that Navier-Stokes viscosity can be solved for implicitly as well. Finally, we present a fully implicit approach to surface tension that is robust enough to achieve a steady state solution in a single time step. Beyond stable implicit surface tension for our novel hybrid discretization, we demonstrate preliminary results for both standard front tracking and the particle level set method.

[1]  Mark Sussman,et al.  A method for overcoming the surface tension time step constraint in multiphase flows II , 2012 .

[2]  J. Hochstein,et al.  An implicit surface tension model , 1996 .

[3]  Ronald Fedkiw,et al.  Volume conserving finite element simulations of deformable models , 2007, ACM Trans. Graph..

[4]  S. Osher,et al.  Spatially adaptive techniques for level set methods and incompressible flow , 2006 .

[5]  Fabrice Colin,et al.  Computing a null divergence velocity field using smoothed particle hydrodynamics , 2006, J. Comput. Phys..

[6]  Peter Smereka,et al.  Semi-Implicit Level Set Methods for Curvature and Surface Diffusion Motion , 2003, J. Sci. Comput..

[7]  J. Bonet,et al.  A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications , 1998 .

[8]  Ignacio Llamas,et al.  FlowFixer: Using BFECC for Fluid Simulation , 2005, NPH.

[9]  Jérôme Breil,et al.  Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods , 2011, J. Comput. Phys..

[10]  Rui Xu,et al.  Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach , 2009, J. Comput. Phys..

[11]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[12]  Jacek Pozorski,et al.  SPH computation of incompressible viscous flows , 2002 .

[13]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[14]  Tamás Tél,et al.  Turbulent drag reduction in dam-break flows , 2004 .

[15]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[16]  Ignacio Llamas,et al.  Advections with Significantly Reduced Dissipation and Diffusion , 2007, IEEE Transactions on Visualization and Computer Graphics.

[17]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[18]  S. Hysing,et al.  A new implicit surface tension implementation for interfacial flows , 2006 .

[19]  Alexander I. Bobenko,et al.  A Discrete Laplace–Beltrami Operator for Simplicial Surfaces , 2005, Discret. Comput. Geom..

[20]  Roger Crawfis,et al.  Efficient subdivision of finite-element datasets into consistent tetrahedra , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[21]  Mark Sussman,et al.  An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow , 1999, SIAM J. Sci. Comput..

[22]  Jun-Hai Yong,et al.  Simulation of bubbles , 2006, SCA '06.

[23]  Ron Kimmel,et al.  Fast Marching Methods , 2004 .

[24]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[25]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[26]  Olivier Devillers,et al.  Perturbations for Delaunay and weighted Delaunay 3D triangulations , 2011, Comput. Geom..

[27]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[28]  Ronald Fedkiw,et al.  A Boundary Condition Capturing Method for Multiphase Incompressible Flow , 2000, J. Sci. Comput..

[29]  J. Brackbill,et al.  FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions , 1986 .

[30]  Rui Xu,et al.  Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method , 2008, J. Comput. Phys..

[31]  Peter Stansby,et al.  The initial stages of dam-break flow , 1998, Journal of Fluid Mechanics.

[32]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[33]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[34]  T. Aslam A partial differential equation approach to multidimensional extrapolation , 2004 .

[35]  S. Osher,et al.  An improved level set method for incompressible two-phase flows , 1998 .

[36]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[37]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[38]  Li-Tien Cheng,et al.  A second-order-accurate symmetric discretization of the Poisson equation on irregular domains , 2002 .

[39]  Mark Sussman,et al.  A Stable and Efficient Method for Treating Surface Tension in Incompressible Two-Phase Flow , 2009, SIAM J. Sci. Comput..

[40]  Robert Bridson,et al.  A high‐order accurate particle‐in‐cell method , 2012 .

[41]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[42]  Ronald Fedkiw,et al.  Two-Way Coupled SPH and Particle Level Set Fluid Simulation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[43]  Jie Liu,et al.  A Hybrid Particle-Mesh Method for Viscous , Incompressible , Multiphase Flows , 2003 .

[44]  Siegfried Selberherr,et al.  Three-Dimensional Delaunay Mesh Generation Using a Modified Advancing Front Approach , 1997 .

[45]  Jonathan Richard Shewchuk,et al.  Robust adaptive floating-point geometric predicates , 1996, SCG '96.

[46]  Nikolaus A. Adams,et al.  An incompressible multi-phase SPH method , 2007, J. Comput. Phys..

[47]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[48]  Yoshiaki Oka,et al.  A hybrid particle-mesh method for viscous, incompressible, multiphase flows , 2005 .

[49]  Jonathan Richard Shewchuk,et al.  General-Dimensional Constrained Delaunay and Constrained Regular Triangulations, I: Combinatorial Properties , 2008, Discret. Comput. Geom..

[50]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[51]  J. Mostaghimi,et al.  A semi‐implicit finite volume implementation of the CSF method for treating surface tension in interfacial flows , 2009 .

[52]  Ronald Fedkiw,et al.  Semi-implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid , 2012, J. Comput. Phys..

[53]  Yingjie Liu,et al.  Back and forth error compensation and correction methods for semi-lagrangian schemes with application to level set interface computations , 2006, Math. Comput..

[54]  Wang Hai-bing,et al.  High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .

[55]  Tamal K. Dey,et al.  Curve and Surface Reconstruction , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[56]  David L. Chopp,et al.  Some Improvements of the Fast Marching Method , 2001, SIAM J. Sci. Comput..

[57]  T. Dupont,et al.  Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function , 2003 .

[58]  Hongkai Zhao,et al.  An Eulerian Formulation for Solving Partial Differential Equations Along a Moving Interface , 2003, J. Sci. Comput..

[59]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[60]  Murray Rudman,et al.  Efficient simulation of surface tension-dominated flows through enhanced interface geometry interrogation , 2010, J. Comput. Phys..

[61]  Ronald Fedkiw,et al.  An Unconditionally Stable MacCormack Method , 2008, J. Sci. Comput..

[62]  Ronald Fedkiw,et al.  A monolithic mass tracking formulation for bubbles in incompressible flow , 2013, J. Comput. Phys..

[63]  Ronald Fedkiw,et al.  A symmetric positive definite formulation for monolithic fluid structure interaction , 2011, J. Comput. Phys..

[64]  K. Szewc,et al.  Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method , 2011, 1110.5752.