A new incompressibility discretization for a hybrid particle MAC grid representation with surface tension
暂无分享,去创建一个
Ronald Fedkiw | Bo Zhu | ByungMoon Kim | Wen Zheng | R. Fedkiw | Wen Zheng | Byungmoon Kim | Bo Zhu | Ronald Fedkiw | Zheng Wen
[1] Mark Sussman,et al. A method for overcoming the surface tension time step constraint in multiphase flows II , 2012 .
[2] J. Hochstein,et al. An implicit surface tension model , 1996 .
[3] Ronald Fedkiw,et al. Volume conserving finite element simulations of deformable models , 2007, ACM Trans. Graph..
[4] S. Osher,et al. Spatially adaptive techniques for level set methods and incompressible flow , 2006 .
[5] Fabrice Colin,et al. Computing a null divergence velocity field using smoothed particle hydrodynamics , 2006, J. Comput. Phys..
[6] Peter Smereka,et al. Semi-Implicit Level Set Methods for Curvature and Surface Diffusion Motion , 2003, J. Sci. Comput..
[7] J. Bonet,et al. A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications , 1998 .
[8] Ignacio Llamas,et al. FlowFixer: Using BFECC for Fluid Simulation , 2005, NPH.
[9] Jérôme Breil,et al. Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods , 2011, J. Comput. Phys..
[10] Rui Xu,et al. Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach , 2009, J. Comput. Phys..
[11] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[12] Jacek Pozorski,et al. SPH computation of incompressible viscous flows , 2002 .
[13] Ian M. Mitchell,et al. A hybrid particle level set method for improved interface capturing , 2002 .
[14] Tamás Tél,et al. Turbulent drag reduction in dam-break flows , 2004 .
[15] D. Juric,et al. A front-tracking method for the computations of multiphase flow , 2001 .
[16] Ignacio Llamas,et al. Advections with Significantly Reduced Dissipation and Diffusion , 2007, IEEE Transactions on Visualization and Computer Graphics.
[17] Marshall W. Bern,et al. Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.
[18] S. Hysing,et al. A new implicit surface tension implementation for interfacial flows , 2006 .
[19] Alexander I. Bobenko,et al. A Discrete Laplace–Beltrami Operator for Simplicial Surfaces , 2005, Discret. Comput. Geom..
[20] Roger Crawfis,et al. Efficient subdivision of finite-element datasets into consistent tetrahedra , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).
[21] Mark Sussman,et al. An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow , 1999, SIAM J. Sci. Comput..
[22] Jun-Hai Yong,et al. Simulation of bubbles , 2006, SCA '06.
[23] Ron Kimmel,et al. Fast Marching Methods , 2004 .
[24] S. Cummins,et al. An SPH Projection Method , 1999 .
[25] S. Osher,et al. High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .
[26] Olivier Devillers,et al. Perturbations for Delaunay and weighted Delaunay 3D triangulations , 2011, Comput. Geom..
[27] Adrian Bowyer,et al. Computing Dirichlet Tessellations , 1981, Comput. J..
[28] Ronald Fedkiw,et al. A Boundary Condition Capturing Method for Multiphase Incompressible Flow , 2000, J. Sci. Comput..
[29] J. Brackbill,et al. FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions , 1986 .
[30] Rui Xu,et al. Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method , 2008, J. Comput. Phys..
[31] Peter Stansby,et al. The initial stages of dam-break flow , 1998, Journal of Fluid Mechanics.
[32] J. Tsitsiklis,et al. Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[33] James A. Sethian,et al. The Fast Construction of Extension Velocities in Level Set Methods , 1999 .
[34] T. Aslam. A partial differential equation approach to multidimensional extrapolation , 2004 .
[35] S. Osher,et al. An improved level set method for incompressible two-phase flows , 1998 .
[36] D. F. Watson. Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..
[37] H. J.,et al. Hydrodynamics , 1924, Nature.
[38] Li-Tien Cheng,et al. A second-order-accurate symmetric discretization of the Poisson equation on irregular domains , 2002 .
[39] Mark Sussman,et al. A Stable and Efficient Method for Treating Surface Tension in Incompressible Two-Phase Flow , 2009, SIAM J. Sci. Comput..
[40] Robert Bridson,et al. A high‐order accurate particle‐in‐cell method , 2012 .
[41] Danping Peng,et al. Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..
[42] Ronald Fedkiw,et al. Two-Way Coupled SPH and Particle Level Set Fluid Simulation , 2008, IEEE Transactions on Visualization and Computer Graphics.
[43] Jie Liu,et al. A Hybrid Particle-Mesh Method for Viscous , Incompressible , Multiphase Flows , 2003 .
[44] Siegfried Selberherr,et al. Three-Dimensional Delaunay Mesh Generation Using a Modified Advancing Front Approach , 1997 .
[45] Jonathan Richard Shewchuk,et al. Robust adaptive floating-point geometric predicates , 1996, SCG '96.
[46] Nikolaus A. Adams,et al. An incompressible multi-phase SPH method , 2007, J. Comput. Phys..
[47] A. Chorin. A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .
[48] Yoshiaki Oka,et al. A hybrid particle-mesh method for viscous, incompressible, multiphase flows , 2005 .
[49] Jonathan Richard Shewchuk,et al. General-Dimensional Constrained Delaunay and Constrained Regular Triangulations, I: Combinatorial Properties , 2008, Discret. Comput. Geom..
[50] G. Tryggvason,et al. A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .
[51] J. Mostaghimi,et al. A semi‐implicit finite volume implementation of the CSF method for treating surface tension in interfacial flows , 2009 .
[52] Ronald Fedkiw,et al. Semi-implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid , 2012, J. Comput. Phys..
[53] Yingjie Liu,et al. Back and forth error compensation and correction methods for semi-lagrangian schemes with application to level set interface computations , 2006, Math. Comput..
[54] Wang Hai-bing,et al. High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .
[55] Tamal K. Dey,et al. Curve and Surface Reconstruction , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[56] David L. Chopp,et al. Some Improvements of the Fast Marching Method , 2001, SIAM J. Sci. Comput..
[57] T. Dupont,et al. Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function , 2003 .
[58] Hongkai Zhao,et al. An Eulerian Formulation for Solving Partial Differential Equations Along a Moving Interface , 2003, J. Sci. Comput..
[59] S. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .
[60] Murray Rudman,et al. Efficient simulation of surface tension-dominated flows through enhanced interface geometry interrogation , 2010, J. Comput. Phys..
[61] Ronald Fedkiw,et al. An Unconditionally Stable MacCormack Method , 2008, J. Sci. Comput..
[62] Ronald Fedkiw,et al. A monolithic mass tracking formulation for bubbles in incompressible flow , 2013, J. Comput. Phys..
[63] Ronald Fedkiw,et al. A symmetric positive definite formulation for monolithic fluid structure interaction , 2011, J. Comput. Phys..
[64] K. Szewc,et al. Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method , 2011, 1110.5752.