Climatic warming disrupts recurrent Alpine insect outbreaks

Climate change has been identified as a causal factor for diverse ecological changes worldwide. Warming trends over the last couple of decades have coincided with the collapse of long-term population cycles in a broad range of taxa, although causal mechanisms are not well-understood. Larch budmoth (LBM) population dynamics across the European Alps, a classic example of regular outbreaks, inexplicably changed sometime during the 1980s after 1,200 y of nearly uninterrupted periodic outbreak cycles. Herein, analysis of perhaps the most extensive spatiotemporal dataset of population dynamics and reconstructed Alpine-wide LBM defoliation records reveals elevational shifts in LBM outbreak epicenters that coincide with temperature fluctuations over two centuries. A population model supports the hypothesis that temperature-mediated shifting of the optimal elevation for LBM population growth is the mechanism for elevational epicenter changes. Increases in the optimal elevation for population growth over the warming period of the last century to near the distributional limit of host larch likely dampened population cycles, thereby causing the collapse of a millennium-long outbreak cycle. The threshold-like change in LBM outbreak pattern highlights how interacting species with differential response rates to climate change can result in dramatic ecological changes.

[1]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[2]  A. Nicholson,et al.  The Balance of Animal Populations.—Part I. , 1935 .

[3]  Andrew M. Liebhold,et al.  1200 years of regular outbreaks in alpine insects , 2007, Proceedings of the Royal Society B: Biological Sciences.

[4]  Camille Parmesan,et al.  Climate and species' range , 1996, Nature.

[5]  R. May,et al.  STABILITY IN INSECT HOST-PARASITE MODELS , 1973 .

[6]  G. Yohe,et al.  A globally coherent fingerprint of climate change impacts across natural systems , 2003, Nature.

[7]  Michele Brunetti,et al.  HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region , 2007 .

[8]  D. Frank,et al.  Summer temperature variations in the European Alps, A.D. 755-2004 , 2006 .

[9]  Sandrine Chauchard,et al.  An increase in the upper tree-limit of silver fir (Abies alba Mill.) in the Alps since the mid-20th century: a land-use change phenomenon. , 2010 .

[10]  Christian Körner,et al.  A re-assessment of high elevation treeline positions and their explanation , 1998, Oecologia.

[11]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[12]  Atle Mysterud,et al.  Linking climate change to lemming cycles , 2008, Nature.

[13]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[14]  Maihe Li,et al.  Growth responses of Picea abies and Larix decidua to elevation in subalpine areas of Tyrol, Austria , 2003 .

[15]  Andrew M. Liebhold,et al.  Landscape geometry and travelling waves in the larch budmoth , 2004 .

[16]  W. Baltensweiler,et al.  Tracing the influence of larch-bud-moth insect outbreaks and weather conditions on larch tree-ring growth in Engadine (Switzerland) , 2008 .

[17]  D. Janzen,et al.  Climatic unpredictability and parasitism of caterpillars: implications of global warming. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D Amadon,et al.  Population Biology. , 1962, Science.

[19]  M. Saunders,et al.  Plant-Provided Food for Carnivorous Insects: a Protective Mutualism and Its Applications , 2009 .

[20]  M. Sturm,et al.  Climate change: Increasing shrub abundance in the Arctic , 2001, Nature.

[21]  G. Schneiter,et al.  Potential shift in tree species composition after interaction of fire and drought in the Central Alps , 2010, European Journal of Forest Research.

[22]  V. Delucchi Parasitoids and hyperparasitoids ofZeiraphera diniana [Lep., Tortricidae] and their pole in population control in outbreak areas , 1982, Entomophaga.

[23]  H. Mooney,et al.  Shifting plant phenology in response to global change. , 2007, Trends in ecology & evolution.

[24]  M. Saurer,et al.  Summer temperature dependency of larch budmoth outbreaks revealed by Alpine tree-ring isotope chronologies , 2009, Oecologia.

[25]  A. Edwards,et al.  One-Third of Reef-Building Corals Face Elevated Extinction Risk from Climate Change and Local Impacts , 2008, Science.

[26]  Stefano Schiavon,et al.  Climate Change 2007: The Physical Science Basis. , 2007 .

[27]  W. Baltensweiler Why the larch bud-moth cycle collapsed in the subalpine larch-cembran pine forests in the year 1990 for the first time since 1850 , 1993, Oecologia.

[28]  J. Régnière,et al.  Assessing the impacts of global warming on forest pest dynamics , 2003 .

[29]  Andrew M. Liebhold,et al.  Three centuries of insect outbreaks across the European Alps. , 2009, The New phytologist.

[30]  Annette Menzel,et al.  Exceptional European warmth of autumn 2006 and winter 2007: Historical context, the underlying dynamics, and its phenological impacts , 2007 .

[31]  R. Ims,et al.  Collapsing population cycles. , 2008, Trends in ecology & evolution.

[32]  C. Urbinati,et al.  AGE‐DEPENDENT TREE‐RING GROWTH RESPONSES TO CLIMATE IN LARIX DECIDUA AND PINUS CEMBRA , 2004 .

[33]  Reinhard Böhm,et al.  Temperature and precipitation variability in the European Alps since 1500 , 2005 .

[34]  P. Stott,et al.  Human contribution to the European heatwave of 2003 , 2004, Nature.

[35]  U. Weber Dendroecological reconstruction and interpretation of larch budmoth (Zeiraphera diniana) outbreaks in two central alpine valleys of Switzerland from 1470 – 1990 , 1997, Trees.

[36]  J. L. Parra,et al.  Impact of a Century of Climate Change on Small-Mammal Communities in Yosemite National Park, USA , 2008, Science.

[37]  Zur populationsdynamischen Wirkung der durch Raupenfrass und Düngung veränderten Nahrungsbasis auf den Grauen Lärchenwickler Zeiraphera diniana Gn.(Lep.: Tortricidae) , 1977 .

[38]  K. Day The influence of temperature on egg mortality in the budmoth Zeiraphera diniana (Lepidoptera:Tortricidae), and its role in determining the regional abundance of an important forest pest , 1997 .

[39]  C. Körner The use of 'altitude' in ecological research. , 2007, Trends in ecology & evolution.

[40]  B. Kendall,et al.  DYNAMICAL EFFECTS OF PLANT QUALITY AND PARASITISM ON POPULATION CYCLES OF LARCH BUDMOTH , 2003 .

[41]  D. Frank,et al.  Testing for tree‐ring divergence in the European Alps , 2008 .

[42]  Andrew M. Liebhold,et al.  Waves of Larch Budmoth Outbreaks in the European Alps , 2002, Science.

[43]  P. Marquet,et al.  A Significant Upward Shift in Plant Species Optimum Elevation During the 20th Century , 2008, Science.

[44]  C. Parmesan Ecological and Evolutionary Responses to Recent Climate Change , 2006 .

[45]  E. Schulze,et al.  Land-use history and succession of Larix decidua in the Southern Alps of Italy–An essay based on a cultural history study of Roswitha Asche , 2007 .

[46]  Melanie A. Harsch,et al.  Are treelines advancing? A global meta-analysis of treeline response to climate warming. , 2009, Ecology letters.

[47]  G. Benz Negative Rückkoppelung durch Raum‐ und Nahrungskonkurrenz sowie zyklische Veränderung der Nahrungsgrundlage als Regelprinzip in der Populationsdynamik des Grauen Lärchenwicklers, Zeiraphera diniana (Guenée) (Lep., Tortricidae)1 , 2009 .