Theory of complementary holograms arising from electron–hole transport in photorefractive media

The time evolution of space-charge field gratings in photorefractive media is derived for a simple two-level electron–hole-transport model. At one level, charge transfer occurs by electron transport, and at the other, by hole transport, thus leading to the formation of complementary gratings. If the characteristic lifetimes of the gratings differ significantly, extended-lifetime gratings are possible. The role of the applied electric field in the evolution of such gratings is examined, and limiting cases are considered. The results of the derivation are compared with examples of complementary gratings in the literature.

[1]  G. Valley,et al.  Erase rates in photorefractive materials with two photoactive species. , 1983, Applied optics.

[2]  Jean-Pierre Herriau,et al.  Quasi‐nondestructive readout of holographically stored information in photorefractive Bi12SiO20 crystals , 1989 .

[3]  F. Micheron,et al.  Electrical control in photoferroelectric materials for optical storage. , 1974, Applied optics.

[4]  R. B. Lauer,et al.  Transport processes of photoinduced carriers in Bi12SiO20 , 1973 .

[5]  George C. Valley,et al.  Simultaneous electron/hole transport in photorefractive materials , 1986 .

[6]  Alastair M. Glass,et al.  Multiphoton photorefractive processes for optical storage in LiNbO3 , 1974 .

[7]  R W Eason,et al.  Applications of Multiplexed real time permanent holographic recording in photorefractive BSO. , 1989, Applied optics.

[8]  D. Staebler,et al.  Thermally Fixed Holograms in LiNbO3 , 1972, IEEE Transactions on Sonics and Ultrasonics.

[9]  J. P. Herriau,et al.  Hologram fixing process at room temperature in photorefractive Bi12SiO20 crystals , 1986 .

[10]  A. E. Attard,et al.  Photoconductive and photorefractive effects in BSO. , 1989, Applied optics.

[11]  Luis Arizmendi,et al.  Thermal fixing of holographic gratings in Bi12SiO20 , 1989 .

[12]  V. N. Starkov,et al.  Influence of the optical activity on hologram formation in photorefractive crystals , 1984 .

[13]  R W Eason,et al.  Multiplexed permanent and real time holographic recording in photorefractive BSO. , 1989, Applied optics.

[14]  Alastair M. Glass,et al.  High−sensitivity optical recording in KTN by two−photon absorption , 1975 .

[15]  M. Soskin,et al.  Holographic storage in electrooptic crystals. i. steady state , 1978 .

[16]  Jack Feinberg,et al.  Photorefractive effects and light‐induced charge migration in barium titanate , 1980 .

[17]  Olson,et al.  Nonequilibrium screening of the photorefractive effect. , 1989, Physical review letters.

[18]  M Carrascosa,et al.  Erasure of holographic gratings in photorefractive materials with two active species. , 1988, Applied optics.

[19]  R. Hellwarth,et al.  Hole - electron competition in photorefractive gratings. , 1986, Optics letters.

[20]  H. Vormann,et al.  Hydrogen as origin of thermal fixing in LiNbO3: Fe , 1981 .

[21]  Marvin B. Klein,et al.  Optimal Properties Of Photorefractive Materials For Optical Data Processing , 1983 .

[22]  H. Kogelnik Coupled wave theory for thick hologram gratings , 1969 .

[23]  J. J. Amodei,et al.  HOLOGRAPHIC PATTERN FIXING IN ELECTRO‐OPTIC CRYSTALS , 1971 .

[24]  F. Micheron,et al.  Electrical Control of Fixation and Erasure of Holographic Patterns in Ferroelectric Materials , 1972 .

[25]  George C. Valley,et al.  Short-pulse grating formation in photorefractive materials , 1983 .