VIPER: Volume Invariant Position-based Elastic Rods

We extend the formulation of position-based rods to include elastic volumetric deformations. We achieve this by introducing an additional degree of freedom per vertex -- isotropic scale (and its velocity). Including scale enriches the space of possible deformations, allowing the simulation of volumetric effects, such as a reduction in cross-sectional area when a rod is stretched. We rigorously derive the continuous formulation of its elastic energy potentials, and hence its associated position-based dynamics (PBD) updates to realize this model, enabling the simulation of up to 26000 DOFs at 140 Hz in our GPU implementation. We further show how rods can provide a compact alternative to tetrahedral meshes for the representation of complex muscle deformations, as well as providing a convenient representation for collision detection. This is achieved by modeling a muscle as a bundle of rods, for which we also introduce a technique to automatically convert a muscle surface mesh into a rods-bundle. Finally, we show how rods and/or bundles can be skinned to a surface mesh to drive its deformation, resulting in an alternative to cages for real-time volumetric deformation. The source code of our physics engine will be openly available1.

[1]  Ladislav Kavan,et al.  Computational bodybuilding , 2015, ACM Trans. Graph..

[2]  Jessica K. Hodgins,et al.  Real-time skeletal skinning with optimized centers of rotation , 2016, ACM Trans. Graph..

[3]  Olga Sorkine-Hornung,et al.  Cosserat Rods with Projective Dynamics , 2018, Comput. Graph. Forum.

[4]  Wayne E. Carlson,et al.  Anatomy-based modeling of the human musculature , 1997, SIGGRAPH.

[5]  Elmar Schömer,et al.  Position and orientation based Cosserat rods , 2016, Symposium on Computer Animation.

[6]  Lifeng Zhu,et al.  Adaptable Anatomical Models for Realistic Bone Motion Reconstruction , 2015, Comput. Graph. Forum.

[7]  Brian Wyvill,et al.  Sketch-based implicit blending , 2017, ACM Trans. Graph..

[8]  Marco Romeo,et al.  Muscle Simulation with Extended Position Based Dynamics , 2018, CEIG.

[9]  Pierre Alliez,et al.  Polygon Mesh Processing , 2010 .

[10]  Andrea Tagliasacchi,et al.  Sphere-meshes for real-time hand modeling and tracking , 2016, ACM Trans. Graph..

[11]  Demetri Terzopoulos,et al.  Physically-based facial modelling, analysis, and animation , 1990, Comput. Animat. Virtual Worlds.

[12]  Matthias Müller,et al.  XPBD: position-based simulation of compliant constrained dynamics , 2016, MIG.

[13]  H. Lang,et al.  Multi-body dynamics simulation of geometrically exact Cosserat rods , 2011 .

[14]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[15]  Hongyi Xu,et al.  Pose-space subspace dynamics , 2016, ACM Trans. Graph..

[16]  Andrea Tagliasacchi,et al.  3D Skeletons: A State‐of‐the‐Art Report , 2016, Comput. Graph. Forum.

[17]  E. Fiume,et al.  A Survey of Modeling and Simulation of Skeletal Muscle , 2010 .

[18]  Tsuneya Kurihara,et al.  Modeling deformable human hands from medical images , 2004, SCA '04.

[19]  Jernej Barbic,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[20]  Dinesh K. Pai,et al.  Thin skin elastodynamics , 2013, ACM Trans. Graph..

[21]  Mark Pauly,et al.  Phace: physics-based face modeling and animation , 2017, ACM Trans. Graph..

[22]  Doug L. James,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, SIGGRAPH 2005.

[23]  Ken-ichi Anjyo,et al.  Practice and Theory of Blendshape Facial Models , 2014, Eurographics.

[24]  Michael J. Black,et al.  Dyna: a model of dynamic human shape in motion , 2015, ACM Trans. Graph..

[25]  Tae-Yong Kim,et al.  Unified particle physics for real-time applications , 2014, ACM Trans. Graph..

[26]  Jirí Zára,et al.  Skinning with dual quaternions , 2007, SI3D.

[27]  Hon Fai Choi,et al.  Skeletal Muscle Fascicle Arrangements Can Be Reconstructed Using a Laplacian Vector Field Simulation , 2013, PloS one.

[28]  Jun Saito,et al.  Efficient and robust skin slide simulation , 2017 .

[29]  Matthias Müller,et al.  Adding Physics to Animated Characters with Oriented Particles , 2011, VRIPHYS.

[30]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[31]  Dinesh K. Pai,et al.  Musculotendon simulation for hand animation , 2008, SIGGRAPH 2008.

[32]  E. Vouga,et al.  Discrete viscous threads , 2010, ACM Trans. Graph..

[33]  E. Grinspun,et al.  Discrete elastic rods , 2008, SIGGRAPH 2008.

[34]  M. Romeo,et al.  Muscle and Fascia Simulation with Extended Position Based Dynamics , 2020, Comput. Graph. Forum.

[35]  Jaroslav Krivánek,et al.  Reconstructing personalized anatomical models for physics-based body animation , 2016, ACM Trans. Graph..

[36]  Ronald Fedkiw,et al.  Automatic determination of facial muscle activations from sparse motion capture marker data , 2005, ACM Trans. Graph..

[37]  Marie-Paule Cani,et al.  Anatomy transfer , 2013, ACM Trans. Graph..

[38]  Andreas Antoniou,et al.  Practical Optimization: Algorithms and Engineering Applications , 2007, Texts in Computer Science.

[39]  Alec Jacobson,et al.  Skinning: real-time shape deformation , 2014, SIGGRAPH ASIA Courses.

[40]  N. Chentanez,et al.  Solid simulation with oriented particles , 2011, SIGGRAPH 2011.

[41]  John P. Lewis,et al.  Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-Driven Deformation , 2000, SIGGRAPH.

[42]  Elmar Schömer,et al.  Interactive simulation of one-dimensional flexible parts , 2006, Symposium on Solid and Physical Modeling.

[43]  Michael J. Black,et al.  SMPL: A Skinned Multi-Person Linear Model , 2023 .

[44]  Andrew W. Fitzgibbon,et al.  Online generative model personalization for hand tracking , 2017, ACM Trans. Graph..

[45]  Tamy Boubekeur,et al.  Sphere-Meshes , 2013, ACM Trans. Graph..

[46]  J. Spillmann,et al.  CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects , 2007, SCA '07.

[47]  Markus H. Gross,et al.  Efficient simulation of example-based materials , 2012, SCA '12.

[48]  Jan Bender,et al.  Position-Based Simulation Methods in Computer Graphics , 2015, Eurographics.

[49]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Theodore Kim,et al.  Stable Neo-Hookean Flesh Simulation , 2018, ACM Trans. Graph..

[51]  N. Gould On the Accurate Determination of Search Directions for Simple Differentiable Penalty Functions , 1986 .

[52]  Dinesh K. Pai,et al.  STRANDS: Interactive Simulation of Thin Solids using Cosserat Models , 2002, Comput. Graph. Forum.

[53]  David I. W. Levin,et al.  Large-scale dynamic simulation of highly constrained strands , 2011, SIGGRAPH 2011.

[54]  Simon Green,et al.  Particle Simulation using CUDA , 2010 .

[55]  Nobuyuki Umetani,et al.  Position-based elastic rods , 2014, SCA '14.

[56]  Jan Bender,et al.  A robust method to extract the rotational part of deformations , 2016, MIG.

[57]  Ken Jackson,et al.  Modeling and Simulation of Skeletal Muscle for Computer Graphics: A Survey , 2012, Found. Trends Comput. Graph. Vis..

[58]  Brian Wyvill,et al.  Implicit skinning , 2013, ACM Trans. Graph..

[59]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[60]  John P. Lewis,et al.  Skinning: real-time shape deformation (full text not available) , 2014, SIGGRAPH '14.

[61]  Marie-Paule Cani,et al.  Super-helices for predicting the dynamics of natural hair , 2006, SIGGRAPH 2006.

[62]  Eitan Grinspun,et al.  Example-based elastic materials , 2011, ACM Trans. Graph..