Bubble-driven liquid flows

Detailed information is provided in this paper on the physics of momentum transfer in bubble-driven liquid flows. Experimental information is obtained on the flow around bubbles and on the axisymmetric bubble-driven liquid flow inside liquid-filled cylinders located with their axes in the vertical direction. A laser-Doppler anemometer extended for particulate two-phase flows is employed for these measurements to yield local fluid velocity information as well as the rise velocity of bubbles. The bubble top radius and the bubble shape were also found from these measurements. Utilizing experimentally gained information and employing the basic equations for particulate two-phase flows , permits finite difference equations to be formulated that allow bubble-driven liquid flows to be computed. Results are presented for boundary conditions corresponding to those of the experimental studies. Comparisons of numerical and experimental results are shown to be in good agreement. This is taken as a justification to employ the developed computer programs to carry out parameter studies for bubble-driven liquid flow inside circular cylinders. Results of these studies are presented and discussed.