Computable Component-wise Reducibility

We consider equivalence relations and preorders complete for various levels of the arithmetical hierarchy under computable, component-wise reducibility. We show that implication in first order logic is a complete preorder for $\SI 1$, the $\le^P_m$ relation on EXPTIME sets for $\SI 2$ and the embeddability of computable subgroups of $(\QQ,+)$ for $\SI 3$. In all cases, the symmetric fragment of the preorder is complete for equivalence relations on the same level. We present a characterisation of $\PI 1$ equivalence relations which allows us to establish that equality of polynomial time functions and inclusion of polynomial time sets are complete for $\PI 1$ equivalence relations and preorders respectively. We also show that this is the limit of the enquiry: for $n\geq 2$ there are no $\PI n$ nor $\DE n$-complete equivalence relations.

[1]  R. Baer,et al.  Abelian groups without elements of finite order , 1937 .

[2]  Harvey M. Friedman,et al.  A Borel reductibility theory for classes of countable structures , 1989, Journal of Symbolic Logic.

[3]  Joel David Hamkins,et al.  The Hierarchy of Equivalence Relations on the Natural Numbers Under Computable Reducibility , 2012, Comput..

[4]  Andre Nies,et al.  Coding Methods in Computability Theory and Complexity Theory , 2013, 1308.6399.

[5]  Stephen Pollard,et al.  The Hierarchy of Sets , 2014 .

[6]  Yu. L. Ershov,et al.  On a hierarchy of sets. III , 1968 .

[7]  J. Silver,et al.  Counting the number of equivalence classes of Borel and coanalytic equivalence relations , 1980 .

[8]  Christos H. Papadimitriou,et al.  NP-Completeness: A Retrospective , 1997, ICALP.

[9]  W. Calvert,et al.  Comparing Classes of Finite Structures , 2004, 0803.3291.

[10]  Franco Montagna,et al.  Universal Recursion Theoretic Properties of R.E. Preordered Structures , 1985, J. Symb. Log..

[11]  Julia F. Knight,et al.  Turing computable embeddings , 2007, J. Symb. Log..

[12]  Leo Harrington,et al.  Coding in the Partial Order of Enumerable Sets , 1998 .

[13]  Richard M. Friedberg,et al.  Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication , 1958, Journal of Symbolic Logic.

[14]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[15]  Y. Ershov On a hierarchy of sets, II , 1968 .

[16]  Michael Stob,et al.  The intervals of the lattice of recursively enumerable sets determined by major subsets , 1983, Ann. Pure Appl. Log..

[17]  André Nies Intervals of the Lattice of Computably Enumerable Sets and Effective Boolean Algebras , 1997 .

[18]  Andrea Sorbi,et al.  Universal computably Enumerable Equivalence Relations , 2014, J. Symb. Log..

[19]  Robert I. Soare,et al.  Recursively enumerable sets and degrees - a study of computable functions and computability generated sets , 1987, Perspectives in mathematical logic.

[20]  Sy-David Friedman,et al.  The effective theory of Borel equivalence relations , 2009, Ann. Pure Appl. Log..

[21]  Alonzo Church,et al.  A note on the Entscheidungsproblem , 1936, Journal of Symbolic Logic.

[22]  Joel David Hamkins,et al.  Infinite Time Decidable Equivalence Relation Theory , 2009, Notre Dame J. Formal Log..

[23]  Saul A. Kripke,et al.  Deduction-preserving "Recursive Isomorphisms" between theories , 1967 .

[24]  Sy-David Friedman,et al.  On Σ11 equivalence relations over the natural numbers , 2012, Math. Log. Q..

[25]  Yijia Chen,et al.  Strong isomorphism reductions in complexity theory , 2011, The Journal of Symbolic Logic.

[26]  Julia F. Knight,et al.  Classification from a Computable Viewpoint , 2006, Bulletin of Symbolic Logic.

[27]  Lance Fortnow,et al.  Complexity classes of equivalence problems revisited , 2009, Inf. Comput..

[28]  Su Gao,et al.  Computably Enumerable Equivalence Relations , 2001, Stud Logica.

[29]  Richard A. Shore,et al.  Computably Enumerable Partial Orders , 2012, Comput..

[30]  Alain Louveau,et al.  A Glimm-Effros dichotomy for Borel equivalence relations , 1990 .