Reflection of cylindrical surface waves.

The reflection of the radially polarized surface wave on a metal wire at an abrupt end is derived. This theory allows for straightforward calculation of the reflection coefficient, including the phase and the amplitude, which will prove useful to the many applications in nanoplasmonics and terahertz spectroscopy. The theory shows excellent quantitative agreement with past comprehensive numerical simulations for small wires and for predicting the minima in reflection for larger wires. Using this theory, the wavelength dependent reflection is calculated for gold rods of diameter 10 nm, 26 nm and 85 nm, from which the Fabry-Perot resonance wavelengths are found. The Fabry-Perot resonances show good agreement with experimentally measured surface plasmon resonances in nanorods. This demonstrates the predictive ability of the theory for applications involving widely-used nanorods, optical antennas and plasmonic resonators.

[1]  Daniel M. Mittleman,et al.  Metal wires for terahertz wave guiding , 2004, Nature.

[2]  Reuven Gordon,et al.  Light in a subwavelength slit in a metal: Propagation and reflection , 2006 .

[3]  Tim H. Taminiau,et al.  λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence , 2007 .

[4]  Mark L Brongersma,et al.  Spectral properties of plasmonic resonator antennas. , 2008, Optics express.

[5]  Yiping Zhao,et al.  A high sensitive fiber SERS probe based on silver nanorod arrays. , 2007, Optics express.

[6]  Ewold Verhagen,et al.  Nanowire plasmon excitation by adiabatic mode transformation. , 2009, Physical review letters.

[7]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[8]  Carsten Rockstuhl,et al.  Fabry-Pérot resonances in one-dimensional plasmonic nanostructures. , 2009, Nano letters.

[9]  C. Mirkin,et al.  Multipole plasmon resonances in gold nanorods. , 2006, The journal of physical chemistry. B.

[10]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[11]  Stefan A Maier,et al.  Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. , 2006, Physical review letters.

[12]  H. Kurz,et al.  Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires. , 2005, Optics express.

[13]  Xue-Wen Chen,et al.  Highly efficient interfacing of guided plasmons and photons in nanowires. , 2009, Nano letters.

[14]  Jürgen Jahns,et al.  Azimuthally polarized surface plasmons as effective terahertz waveguides. , 2005, Optics express.

[15]  Moon-Ho Jo,et al.  Near-field electrical detection of optical plasmons and single plasmon sources , 2009, Proceedings of the Fourth European Conference on Antennas and Propagation.

[16]  M. R. Freeman,et al.  Metal-wire terahertz time-domain spectroscopy , 2005 .

[17]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[18]  Yiping Zhao,et al.  Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates , 2005 .

[19]  Al-Sayed A. Al-Sherbini Thermal instability of gold nanorods in micellar solution of water/glycerol mixtures , 2004 .

[20]  Kanglin Wang,et al.  Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range. , 2006, Physical review letters.

[21]  M. El-Sayed,et al.  Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. , 2005, The journal of physical chemistry. B.

[22]  Paul Mulvaney,et al.  Gold nanorod extinction spectra , 2006 .

[23]  Sergey I. Bozhevolnyi,et al.  Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration , 2008 .

[24]  D. Mittleman,et al.  Frequency-dependent radiation patterns emitted by THz plasmons on finite length cylindrical metal wires. , 2006, Optics Express.

[25]  Srirang Manohar,et al.  Discrete Dipole Approximation simulations of gold nanorod optical properties:choice of input parameters and comparison with experiment , 2009 .

[26]  Reuven Gordon,et al.  Vectorial method for calculating the Fresnel reflection of surface plasmon polaritons , 2006 .

[27]  Paul Mulvaney,et al.  Electric‐Field‐Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions , 2004 .

[28]  Amy L Oldenburg,et al.  Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. , 2006, Optics express.

[29]  A. Hohenau,et al.  Silver nanowires as surface plasmon resonators. , 2005, Physical review letters.

[30]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[31]  S. J. Al-Bader,et al.  Diffraction of Surface Plasmon Modes on Abruptly Terminated Metallic Nanowires , 2007 .

[32]  Carlos García-Meca,et al.  Modeling high-order plasmon resonances of a U-shaped nanowire used to build a negative-index metamaterial , 2009 .

[33]  R. Gordon RAPID COMMUNICATION: Near-field interference in a subwavelength double slit in a perfect conductor , 2006 .