Discretization error estimates for discontinuous Galerkin isogeometric analysis

Isogeometric analysis is a spline-based discretization method to partial differential equations which show the approximation power of a high-order method. The number of degrees of freedom, however,...

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  Luca F. Pavarino,et al.  BDDC PRECONDITIONERS FOR ISOGEOMETRIC ANALYSIS , 2013 .

[3]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[4]  Stefan Takacs,et al.  Approximation error estimates and inverse inequalities for B-splines of maximum smoothness , 2015, 1502.03733.

[5]  Hendrik Speleers,et al.  Sharp error estimates for spline approximation: Explicit constants, n-widths, and eigenfunction convergence , 2018, Mathematical Models and Methods in Applied Sciences.

[6]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[7]  Angelos Mantzaflaris,et al.  Multipatch Discontinuous Galerkin Isogeometric Analysis , 2015 .

[8]  Claudio Canuto,et al.  BDDC preconditioners for continuous and discontinuous Galerkin methods using spectral/hp elements with variable local polynomial degree , 2014 .

[9]  Giancarlo Sangalli,et al.  Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.

[10]  Luca F. Pavarino,et al.  Overlapping Schwarz Methods for Isogeometric Analysis , 2012, SIAM J. Numer. Anal..

[11]  Clemens Hofreither,et al.  A robust multigrid method for Isogeometric Analysis in two dimensions using boundary correction , 2015, 1512.07091.

[12]  Stefan Takacs,et al.  Convergence Theory for IETI-DP Solvers for Discontinuous Galerkin Isogeometric Analysis that is Explicit in ℎ and 𝑝 , 2020, Comput. Methods Appl. Math..

[13]  Stefan Takacs,et al.  Robust approximation error estimates and multigrid solvers for isogeometric multi-patch discretizations , 2017, Mathematical Models and Methods in Applied Sciences.

[14]  Ulrich Langer,et al.  Dual-primal isogeometric tearing and interconnecting solvers for multipatch dG-IgA equations , 2016, 1601.01808.

[15]  Martin Petzoldt,et al.  A Posteriori Error Estimators for Elliptic Equations with Discontinuous Coefficients , 2002, Adv. Comput. Math..

[16]  Michael S. Floater,et al.  Optimal spline spaces of higher degree for L2 n-widths , 2017, J. Approx. Theory.

[17]  Olof B. Widlund,et al.  Adaptive Selection of Primal Constraints for Isogeometric BDDC Deluxe Preconditioners , 2017, SIAM J. Sci. Comput..

[18]  Clemens Hofreither,et al.  Robust Multigrid for Isogeometric Analysis Based on Stable Splittings of Spline Spaces , 2016, SIAM J. Numer. Anal..

[19]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[20]  Ulrich Langer,et al.  Analysis of multipatch discontinuous Galerkin IgA approximations to elliptic boundary value problems , 2014, Comput. Vis. Sci..

[21]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[22]  M. Kapl,et al.  Isogeometric analysis with $C^1$ functions on planar, unstructured quadrilateral meshes , 2019, The SMAI journal of computational mathematics.

[23]  Monique Dauge,et al.  Neumann and mixed problems on curvilinear polyhedra , 1992 .

[24]  Stefan Takacs,et al.  Fast multigrid solvers for conforming and non-conforming multi-patch Isogeometric Analysis , 2019, 1902.01818.