A thermodynamic framework for modelling membrane transporters.

[1]  P. Gawthrop,et al.  A Thermodynamic Framework for Modelling Membrane Transporters , 2019, Biophysical Journal.

[2]  Edmund J. Crampin,et al.  Biomolecular System Energetics , 2018, 1803.09231.

[3]  Edmund J Crampin,et al.  Bond graph modelling of the cardiac action potential: implications for drift and non-unique steady states , 2018, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  Michael P H Stumpf,et al.  How to deal with parameters for whole-cell modelling , 2017, Journal of The Royal Society Interface.

[5]  Gary R. Mirams,et al.  Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics , 2018, The Journal of physiology.

[6]  Peter J. Gawthrop,et al.  Bond Graph Modeling of Chemiosmotic Biomolecular Energy Transduction , 2016, IEEE Transactions on NanoBioscience.

[7]  Edmund J Crampin,et al.  Energy-based analysis of biomolecular pathways , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Edmund J. Crampin,et al.  Bond graph modelling of chemoelectrical energy transduction , 2015, 1512.00956.

[9]  Edmund J Crampin,et al.  Modular bond-graph modelling and analysis of biomolecular systems. , 2015, IET systems biology.

[10]  E. Crampin,et al.  Regulation of cardiac cellular bioenergetics: mechanisms and consequences , 2015, Physiological reports.

[11]  Edmund J. Crampin,et al.  Hierarchical bond graph modelling of biochemical networks , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  Edmund J. Crampin,et al.  Virtual Reference Environments: a simple way to make research reproducible , 2014, Briefings Bioinform..

[13]  Joseph L Greenstein,et al.  Superresolution Modeling of Calcium Release in the Heart , 2014, Biophysical journal.

[14]  Edmund J Crampin,et al.  Energy-based analysis of biochemical cycles using bond graphs , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  M. Esposito,et al.  Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws. , 2014, The Journal of chemical physics.

[16]  Singiresu S Rao,et al.  A Comparative Study of Evidence Theories in the Modeling, Analysis, and Design of Engineering Systems , 2013 .

[17]  B. Thorens,et al.  The SLC2 (GLUT) family of membrane transporters. , 2013, Molecular aspects of medicine.

[18]  Eric A. Sobie,et al.  Dynamics of calcium sparks and calcium leak in the heart. , 2011, Biophysical journal.

[19]  J. Ingwall,et al.  Compromised Myocardial Energetics in Hypertrophied Mouse Hearts Diminish the Beneficial Effect of Overexpressing SERCA2a , 2011, The Journal of Biological Chemistry.

[20]  Henggui Zhang,et al.  Cardiac cell modelling: observations from the heart of the cardiac physiome project. , 2011, Progress in biophysics and molecular biology.

[21]  Keng C. Soh,et al.  Network thermodynamics in the post-genomic era. , 2010, Current opinion in microbiology.

[22]  Edda Klipp,et al.  Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation , 2010, Bioinform..

[23]  Wolfgang Borutzky,et al.  Bond Graph Methodology , 2010 .

[24]  Yoram Rudy,et al.  Uniqueness and stability of action potential models during rest, pacing, and conduction using problem-solving environment. , 2009, Biophysical journal.

[25]  E. Crampin,et al.  A thermodynamic model of the cardiac sarcoplasmic/endoplasmic Ca(2+) (SERCA) pump. , 2009, Biophysical journal.

[26]  R. Hajjar,et al.  The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases , 2008, Nature Clinical Practice Cardiovascular Medicine.

[27]  Hong Qian,et al.  Chemical Biophysics: Quantitative Analysis of Cellular Systems , 2008 .

[28]  H. Anton,et al.  Elementary linear algebra : applications version , 2008 .

[29]  Jonna R. Terkildsen,et al.  The balance between inactivation and activation of the Na+-K+ pump underlies the triphasic accumulation of extracellular K+ during myocardial ischemia. , 2007, American journal of physiology. Heart and circulatory physiology.

[30]  Edmund J. Crampin,et al.  Computational biology of cardiac myocytes: proposed standards for the physiome , 2007, Journal of Experimental Biology.

[31]  Anuradha Kalyanasundaram,et al.  SERCA pump isoforms: Their role in calcium transport and disease , 2007, Muscle & nerve.

[32]  P. Gawthrop,et al.  Bond-graph modeling , 2007, IEEE Control Systems.

[33]  N P Smith,et al.  Development of models of active ion transport for whole-cell modelling: cardiac sodium-potassium pump as a case study. , 2004, Progress in biophysics and molecular biology.

[34]  S. Hwang Nonequilibrium Thermodynamics of Membrane Transport , 2004 .

[35]  D. F. Gray,et al.  Dependence of Na+-K+ pump current-voltage relationship on intracellular Na+, K+, and Cs+ in rabbit cardiac myocytes. , 2002, American journal of physiology. Cell physiology.

[36]  L. Meis Ca2+-ATPases (SERCA): Energy Transduction and Heat Production in Transport ATPases , 2002, The Journal of Membrane Biology.

[37]  I. Glynn,et al.  A hundred years of sodium pumping. , 2002, Annual review of physiology.

[38]  Y Rudy,et al.  Ionic charge conservation and long-term steady state in the Luo-Rudy dynamic cell model. , 2001, Biophysical journal.

[39]  H. Glitsch,et al.  Electrophysiology of the sodium-potassium-ATPase in cardiac cells. , 2001, Physiological reviews.

[40]  Belkacem Ould Bouamama,et al.  Modelling and Simulation in Thermal and Chemical Engineering , 2000 .

[41]  M. Blaustein,et al.  Sodium/calcium exchange: its physiological implications. , 1999, Physiological reviews.

[42]  James P. Keener,et al.  Mathematical physiology , 1998 .

[43]  E. Bamberg,et al.  Na+,K(+)-ATPase pump currents in giant excised patches activated by an ATP concentration jump. , 1996, Biophysical journal.

[44]  Peter J. Gawthrop,et al.  Metamodelling: for bond graphs and dynamic systems , 1996 .

[45]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[46]  J. Daut,et al.  The energy expenditure of actomyosin‐ATPase, Ca(2+)‐ATPase and Na+,K(+)‐ATPase in guinea‐pig cardiac ventricular muscle. , 1994, The Journal of physiology.

[47]  C. Luo,et al.  A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. , 1994, Circulation research.

[48]  C. Luo,et al.  A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. , 1994, Circulation research.

[49]  D. Gadsby,et al.  [Na] and [K] dependence of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes , 1989, The Journal of general physiology.

[50]  R. M. Harris,et al.  Physical chemistry for the life sciences , 1980, Nature.

[51]  Ching-hsiang Hung,et al.  The Moore-Penrose inverse of a partitioned matrix ? , 1975 .

[52]  R. Veech,et al.  The equilibrium constants of the adenosine triphosphate hydrolysis and the adenosine triphosphate-citrate lyase reactions. , 1973, The Journal of biological chemistry.

[53]  A Katchalsky,et al.  Network thermodynamics: dynamic modelling of biophysical systems , 1973, Quarterly Reviews of Biophysics.

[54]  W. Hasselbach,et al.  ATP synthesis by the reverse of the sarcoplasmic calcium pump , 1971, FEBS letters.