A geometric Levy model for n-fold compound option pricing in a fuzzy framework

In this paper, we study the problem of n -fold compound option valuation using the martingale method and the theory of fuzzy sets. We adopt a geometric Levy process for modeling the underlying asset price dynamics. The log-price is the sum of a Brownian motion with drift and a Poisson process describing jumps in the price. To obtain the pricing formula for n -fold compound option, we use the Esscher transformed martingale measure as the equivalent martingale measure. The major challenge in deriving the closed-form analytic expression for n -fold compound options is to calculate complex multivariate normal integrals; the complexity is due to the sophisticated structure of the options. In order to overcome this difficulty, we prove a mathematical expectation related to multivariate normal variables. To the best of our knowledge, this report describes the first time that such an approach has been adopted, and it is highly useful in the pricing of n -fold compound options and many other financial derivatives. Because the uncertainty in financial markets simultaneously involves randomness and fuzziness, we assume that the underlying asset price follows a fuzzy stochastic process. Under this assumption, the α -cut of the fuzzy price of n -fold compound call options is derived. Considering a decision maker's subjective judgment, the permissible range of the expected prices of n -fold compound call options with uncertainty is given. Finally, numerical examples are presented to illustrate and analyze the theoretical results.

[1]  Zvi Drezner,et al.  Computation of the trivariate normal integral , 1994 .

[2]  Rossella Agliardi Some applications of a closed-form solution for compound options of order N , 2006 .

[3]  Yoshio Miyahara,et al.  A Note on Esscher Transformed Martingale Measures for Geometric Lévy Processes , 2004 .

[4]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[5]  Wei-jun Xu,et al.  A jump-diffusion model for option pricing under fuzzy environments , 2009 .

[6]  Peter Carr,et al.  The Valuation of Sequential Exchange Opportunities , 1988 .

[7]  Kwok-wing Chau,et al.  Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization and Extreme Learning Machines , 2015 .

[8]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[9]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[10]  Alan Genz,et al.  Numerical computation of rectangular bivariate and trivariate normal and t probabilities , 2004, Stat. Comput..

[11]  Jan Kallsen,et al.  The cumulant process and Esscher's change of measure , 2002, Finance Stochastics.

[12]  Mike Patefield,et al.  Fast and Accurate Calculation of Owen\'s T Function , 2000 .

[13]  H. Johnson,et al.  The American Put Option Valued Analytically , 1984 .

[14]  Hsien-Chung Wu,et al.  Using fuzzy sets theory and Black-Scholes formula to generate pricing boundaries of European options , 2007, Appl. Math. Comput..

[15]  Masami Yasuda,et al.  A new evaluation of mean value for fuzzy numbers and its application to American put option under uncertainty , 2006, Fuzzy Sets Syst..

[16]  Maciej Romaniuk,et al.  A fuzzy approach to option pricing in a Levy process setting , 2013, Int. J. Appl. Math. Comput. Sci..

[17]  Susanne A. Griebsch The evaluation of European compound option prices under stochastic volatility using Fourier transform techniques , 2013 .

[18]  G. L. Nigro,et al.  Open innovation: A real option to restore value to the biopharmaceutical R&D , 2014 .

[19]  Jean-Pierre Fouque,et al.  Evaluation of Compound Options using Perturbation Approximation , 2005 .

[20]  D. Madan,et al.  1option Pricing with V. G. Martingale Components , 1991 .

[21]  K. Chau,et al.  A hybrid model coupled with singular spectrum analysis for daily rainfall prediction , 2010 .

[22]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[23]  Danny Cassimon,et al.  The valuation of a NDA using a 6-fold compound option , 2004 .

[24]  Chandrasekhar Reddy Gukhal,et al.  The compound option approach to American options on jump-diffusions , 2004 .

[25]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[26]  An-Pin Chen,et al.  The generalized sequential compound options pricing and sensitivity analysis , 2008, Math. Soc. Sci..

[27]  Steven Kou,et al.  Option Pricing Under a Mixed-Exponential Jump Diffusion Model , 2011, Manag. Sci..

[28]  Sungchul Lee,et al.  Efficient pricing of Bermudan options using recombining quadratures , 2014, J. Comput. Appl. Math..

[29]  A. Thavaneswaran,et al.  Binary option pricing using fuzzy numbers , 2013, Appl. Math. Lett..

[30]  Maciej Romaniuk,et al.  Application of Levy processes and Esscher transformed martingale measures for option pricing in fuzzy framework , 2014, J. Comput. Appl. Math..

[31]  Jun Zhang,et al.  Multilayer Ensemble Pruning via Novel Multi-sub-swarm Particle Swarm Optimization , 2009, J. Univers. Comput. Sci..

[32]  P. Carr,et al.  The Finite Moment Log Stable Process and Option Pricing , 2003 .

[33]  Dean Paxson,et al.  Sequential American Exchange Property Options , 2007 .

[34]  Yoshio Miyahara,et al.  Martingale measures for the geometric Lévy process models , 2005 .

[35]  Jianmin He,et al.  Compound Option Pricing under Fuzzy Environment , 2014, J. Appl. Math..

[36]  Carl Chiarella,et al.  The evaluation of American compound option prices under stochastic volatility and stochastic interest rates , 2013 .

[37]  Enrico Pennings,et al.  Evaluating pharmaceutical R&D under technical and economic uncertainty , 2011, Eur. J. Oper. Res..

[38]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[39]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[40]  Rainer Andergassen,et al.  Valuation of N-stage Investments Under Jump-Diffusion Processes , 2012 .

[41]  Baehyun Min,et al.  Compound Real Options Incorporated With a Stochastic Approach for Evaluating an Uncertainty in Petroleum Exploration , 2013 .

[42]  R. Geske THE VALUATION OF COMPOUND OPTIONS , 1979 .

[43]  Carl Chiarella,et al.  A comparative study on time-efficient methods to price compound options in the Heston model , 2014, Comput. Math. Appl..

[44]  Shanwen Zhang,et al.  Dimension Reduction Using Semi-Supervised Locally Linear Embedding for Plant Leaf Classification , 2009, ICIC.

[45]  Kwok-wing Chau,et al.  Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition , 2015, Water Resources Management.

[46]  G. O. Wesolowsky,et al.  On the computation of the bivariate normal integral , 1990 .

[47]  Yuji Yoshida,et al.  An optimal stopping problem in dynamic fuzzy systems with fuzzy rewards , 1995 .

[48]  Nanny Wermuth,et al.  A Simple Approximation for Bivariate and Trivariate Normal Integrals , 1991 .

[49]  Yu-Lin Huang,et al.  Valuation of multi‐stage BOT projects involving dedicated asset investments: a sequential compound option approach , 2009 .

[50]  C. L. Wu,et al.  Methods to improve neural network performance in daily flows prediction , 2009 .

[51]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[52]  Wei-guo Zhang,et al.  The double exponential jump diffusion model for pricing European options under fuzzy environments , 2012 .

[53]  Maciej Romaniuk,et al.  Computing option price for Levy process with fuzzy parameters , 2010, Eur. J. Oper. Res..

[54]  Danny Cassimon,et al.  Incorporating Technical Risk in Compound Real Option Models to Value a Pharmaceutical R&D Licensing Opportunity , 2010 .

[55]  S. Heston,et al.  A Closed-Form GARCH Option Valuation Model , 2000 .

[56]  Hsien-Chung Wu,et al.  Pricing European options based on the fuzzy pattern of Black-Scholes formula , 2004, Comput. Oper. Res..

[57]  Yue Zhang,et al.  Fuzzy pricing of geometric Asian options and its algorithm , 2015, Appl. Soft Comput..

[58]  Yuji Yoshida,et al.  The valuation of European options in uncertain environment , 2003, Eur. J. Oper. Res..

[59]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[60]  Liesbeth Thomassen,et al.  The n-fold compound option , 2001 .

[61]  William T. Lin,et al.  Computing a Multivariate Normal Integral for Valuing Compound Real Options , 2002 .