暂无分享,去创建一个
[1] Alessio Porretta,et al. Stefan problems with nonlinear diffusion and convection , 2005 .
[2] Jacques Simeon,et al. Compact Sets in the Space L~(O, , 2005 .
[3] P. Lions,et al. Mean field games , 2007 .
[4] Olivier Guéant,et al. Mean Field Games and Applications , 2011 .
[5] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .
[6] Yves Achdou,et al. Mean Field Games: Numerical Methods , 2010, SIAM J. Numer. Anal..
[7] Yves Achdou,et al. Mean Field Games: Convergence of a Finite Difference Method , 2012, SIAM J. Numer. Anal..
[8] Diogo A. Gomes,et al. Mean Field Games Models—A Brief Survey , 2013, Dynamic Games and Applications.
[9] Alessio Porretta,et al. On the Planning Problem for the Mean Field Games System , 2014, Dyn. Games Appl..
[10] Long Chen. FINITE VOLUME METHODS , 2011 .
[11] Alessio Porretta,et al. Weak Solutions to Fokker–Planck Equations and Mean Field Games , 2015 .
[12] Elisabetta Carlini,et al. A Fully Discrete Semi-Lagrangian Scheme for a First Order Mean Field Game Problem , 2012, SIAM J. Numer. Anal..
[13] P. Lions,et al. Jeux à champ moyen. I – Le cas stationnaire , 2006 .
[14] A. Lachapelle,et al. COMPUTATION OF MEAN FIELD EQUILIBRIA IN ECONOMICS , 2010 .
[15] Elisabetta Carlini,et al. A Semi-Lagrangian scheme for a degenerate second order Mean Field Game system , 2014, 1404.5932.
[16] Thierry Gallouët,et al. Finite volumes and nonlinear diffusion equations , 1998 .
[17] W. Zhang. In discrete Time , 2017 .
[18] P. Lions,et al. Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .
[19] Yves Achdou,et al. Finite Difference Methods for Mean Field Games , 2013 .
[20] Pierre-Louis Lions,et al. Partial differential equation models in macroeconomics , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[21] D. Gomes,et al. Discrete Time, Finite State Space Mean Field Games , 2010 .
[22] Thierry Gallouët,et al. Convergence of a finite volume scheme for the convection-diffusion equation with L1 data , 2012, Math. Comput..
[23] Minyi Huang,et al. Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized $\varepsilon$-Nash Equilibria , 2007, IEEE Transactions on Automatic Control.
[24] A. Porretta. On the planning problem for a class of Mean Field Games , 2013 .
[25] P. Cardaliaguet,et al. Mean Field Games , 2020, Lecture Notes in Mathematics.
[26] Olivier Gu'eant,et al. Mean field games equations with quadratic Hamiltonian: a specific approach , 2011, 1106.3269.
[27] T. Gallouët,et al. Non-linear elliptic and parabolic equations involving measure data , 1989 .
[28] Olivier Guéant,et al. New numerical methods for mean field games with quadratic costs , 2012, Networks Heterog. Media.
[29] Yves Achdou,et al. Mean Field Games: Numerical Methods for the Planning Problem , 2012, SIAM J. Control. Optim..
[30] F. Murat,et al. Existence de solutions non bornées pour certaines équations quasi-linéaires , 1982 .