Convergence of a Finite Difference Scheme to Weak Solutions of the System of Partial Differential Equations Arising in Mean Field Games

Mean field--type models describing the limiting behavior of stochastic differential games as the number of players tends to $+\infty$ were recently introduced by Lasry and Lions. Under suitable assumptions, they lead to a system of two coupled partial differential equations, a forward Bellman equation and a backward Fokker--Planck equation. Finite difference schemes for the approximation of such systems have been proposed in previous works. Here, we prove the convergence of these schemes towards a weak solution of the system of partial differential equations.

[1]  Alessio Porretta,et al.  Stefan problems with nonlinear diffusion and convection , 2005 .

[2]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[3]  P. Lions,et al.  Mean field games , 2007 .

[4]  Olivier Guéant,et al.  Mean Field Games and Applications , 2011 .

[5]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[6]  Yves Achdou,et al.  Mean Field Games: Numerical Methods , 2010, SIAM J. Numer. Anal..

[7]  Yves Achdou,et al.  Mean Field Games: Convergence of a Finite Difference Method , 2012, SIAM J. Numer. Anal..

[8]  Diogo A. Gomes,et al.  Mean Field Games Models—A Brief Survey , 2013, Dynamic Games and Applications.

[9]  Alessio Porretta,et al.  On the Planning Problem for the Mean Field Games System , 2014, Dyn. Games Appl..

[10]  Long Chen FINITE VOLUME METHODS , 2011 .

[11]  Alessio Porretta,et al.  Weak Solutions to Fokker–Planck Equations and Mean Field Games , 2015 .

[12]  Elisabetta Carlini,et al.  A Fully Discrete Semi-Lagrangian Scheme for a First Order Mean Field Game Problem , 2012, SIAM J. Numer. Anal..

[13]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[14]  A. Lachapelle,et al.  COMPUTATION OF MEAN FIELD EQUILIBRIA IN ECONOMICS , 2010 .

[15]  Elisabetta Carlini,et al.  A Semi-Lagrangian scheme for a degenerate second order Mean Field Game system , 2014, 1404.5932.

[16]  Thierry Gallouët,et al.  Finite volumes and nonlinear diffusion equations , 1998 .

[17]  W. Zhang In discrete Time , 2017 .

[18]  P. Lions,et al.  Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .

[19]  Yves Achdou,et al.  Finite Difference Methods for Mean Field Games , 2013 .

[20]  Pierre-Louis Lions,et al.  Partial differential equation models in macroeconomics , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  D. Gomes,et al.  Discrete Time, Finite State Space Mean Field Games , 2010 .

[22]  Thierry Gallouët,et al.  Convergence of a finite volume scheme for the convection-diffusion equation with L1 data , 2012, Math. Comput..

[23]  Minyi Huang,et al.  Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized $\varepsilon$-Nash Equilibria , 2007, IEEE Transactions on Automatic Control.

[24]  A. Porretta On the planning problem for a class of Mean Field Games , 2013 .

[25]  P. Cardaliaguet,et al.  Mean Field Games , 2020, Lecture Notes in Mathematics.

[26]  Olivier Gu'eant,et al.  Mean field games equations with quadratic Hamiltonian: a specific approach , 2011, 1106.3269.

[27]  T. Gallouët,et al.  Non-linear elliptic and parabolic equations involving measure data , 1989 .

[28]  Olivier Guéant,et al.  New numerical methods for mean field games with quadratic costs , 2012, Networks Heterog. Media.

[29]  Yves Achdou,et al.  Mean Field Games: Numerical Methods for the Planning Problem , 2012, SIAM J. Control. Optim..

[30]  F. Murat,et al.  Existence de solutions non bornées pour certaines équations quasi-linéaires , 1982 .