Additive particle deposition and selective laser processing-a computational manufacturing framework

Many additive manufacturing technologies involve the deposition of particles onto a surface followed by selective, targeted, laser heating. This paper develops a modular computational framework which combines the various steps within this overall process. Specifically, the framework synthesizes the following:particle dynamics, which primarily entails: (a) the movement of the particles induced by contact with the surface, (b) particle-to-particle contact forces and (c) near-field interaction and external electromagnetic fields.laser-input, which primarily entails: (a) absorption of laser energy input and (b) beam interference (attenuation) from particles andparticle thermodynamics, which primarily entails: (a) heat transfer between particles in contact by conduction and (b) subsequent thermal softening of the particles. Numerical examples are provided and extensions are also addressed for two advanced processing scenarios involving solid-liquid-gas phase transformations.

[1]  Aleksandar Donev,et al.  Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details , 2005 .

[2]  Daniel Gamota,et al.  Printed Organic and Molecular Electronics , 2004 .

[3]  B. Widom,et al.  Random Sequential Addition of Hard Spheres to a Volume , 1966 .

[4]  Tamar Schlick,et al.  Molecular Modeling and Simulation: An Interdisciplinary Guide , 2010 .

[5]  Peter Wriggers,et al.  An Introduction to Computational Micromechanics , 2004 .

[6]  S. Brown,et al.  Yield behavior of metal powder assemblages , 1994 .

[7]  Tarek I. Zohdi,et al.  Computation of strongly coupled multifield interaction in particle–fluid systems , 2007 .

[8]  P. Wriggers,et al.  Homogenization of Granular Material Modeled by a 3D DEM , 2011 .

[9]  Peter Wriggers,et al.  Comparison of the macroscopic behavior of granular materials modeled by different constitutive equations on the microscale , 2008 .

[10]  Ultrafast self-assembly of microscale particles by open-channel flow. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[11]  Tarek I. Zohdi,et al.  Rapid Simulation of Laser Processing of Discrete Particulate Materials , 2013 .

[12]  J. Tersoff,et al.  Empirical interatomic potential for carbon, with application to amorphous carbon. , 1988, Physical review letters.

[13]  R. Behringer Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials , 1999 .

[14]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[15]  Paul K. Wright,et al.  "TECHNOLOGY WEDGES" FOR IMPLEMENTING GREEN MANUFACTURING , 2007 .

[16]  John A Rogers,et al.  High-resolution electrohydrodynamic jet printing. , 2007, Nature materials.

[17]  Serge Piperno,et al.  Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations , 1997 .

[18]  Charbel Farhat,et al.  Modeling and Simulation of Multiphysics Systems , 2005, J. Comput. Inf. Sci. Eng..

[19]  D. Steingart,et al.  Dispenser Printed Electrochemical Capacitors for Power Management of Millimeter Scale Lithium Ion Polymer Microbatteries for Wireless Sensors , 2009 .

[20]  Charbel Farhat,et al.  Partitioned analysis of coupled mechanical systems , 2001 .

[21]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[22]  Lallit Anand,et al.  Constitutive equations for metal powders: application to powder forming processes , 2001 .

[23]  J. Duran,et al.  Sands, Powders, and Grains , 2000 .

[24]  C. Grigoropoulos Transport in Laser Microfabrication: Index , 2009 .

[25]  C. Farhat,et al.  Partitioned procedures for the transient solution of coupled aroelastic problems Part I: Model problem, theory and two-dimensional application , 1995 .

[26]  Aleksandar Donev,et al.  Unusually dense crystal packings of ellipsoids. , 2004, Physical Review Letters.

[27]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[28]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[29]  E. Oñate,et al.  Possibilities of the particle finite element method for fluid–soil–structure interaction problems , 2011 .

[30]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[31]  D T Gethin,et al.  Using a deformable discrete–element technique to model the compaction behaviour of mixed ductile and brittle particulate systems , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  J. M. Haile,et al.  Molecular dynamics simulation : elementary methods / J.M. Haile , 1992 .

[33]  Charbel Farhat,et al.  Higher-Order Subiteration-Free Staggered Algorithm for Nonlinear Transient Aeroelastic Problems , 1998 .

[34]  T. Zohdi A direct particle-based computational framework for electrically enhanced thermo-mechanical sintering of powdered materials , 2014 .

[35]  Luis M. Liz-Marzán,et al.  Printing gold nanoparticles with an electrohydrodynamic direct-write device , 2006 .

[36]  P. Wriggers,et al.  A two-scale model of granular materials , 2012 .

[37]  Masatake Haruta,et al.  Catalysis of Gold Nanoparticles Deposited on Metal Oxides , 2002 .

[38]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[39]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[40]  T I Zohdi,et al.  Genetic design of solids possessing a random–particulate microstructure , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[41]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[42]  Eugenio Oñate,et al.  Modeling of ground excavation with the particle finite element method , 2010 .

[43]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[44]  I. Park,et al.  Nanoscale Patterning and Electronics on Flexible Substrate by Direct Nanoimprinting of Metallic Nanoparticles , 2007 .

[46]  C. Farhat,et al.  Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems , 2000 .

[47]  Aleksandar Donev,et al.  Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. , 2005 .

[48]  Feng Hua Zhao,et al.  Nonlinear Finite Element Analysis of FQQB , 2013 .

[49]  Tarek I. Zohdi,et al.  Charge‐induced clustering in multifield particulate flows , 2005 .

[50]  T. Zohdi An adaptive‐recursive staggering strategy for simulating multifield coupled processes in microheterogeneous solids , 2002 .

[51]  Roland W. Lewis,et al.  A combined finite‐discrete element method for simulating pharmaceutical powder tableting , 2005 .

[52]  Rajesh Ransing,et al.  A discrete deformable element approach for the compaction of powder systems , 2003 .

[53]  Eugenio Oñate,et al.  Comparative study of different discrete element models and evaluation of equivalent micromechanical parameters , 2012 .

[54]  Ibrahim Dincer,et al.  Role of exergy in increasing efficiency and sustainability and reducing environmental impact , 2008 .

[55]  W. C. Elmore,et al.  Physics of Waves , 1969 .

[56]  M. Edirisinghe,et al.  Electrohydrodynamic Direct Writing of Biomedical Polymers and Composites , 2010 .

[57]  Ridley,et al.  All-Inorganic Field Effect Transistors Fabricated by Printing. , 1999, Science.

[58]  T. Zohdi Computation of the coupled thermo-optical scattering properties of random particulate systems , 2006 .

[59]  Tarek I. Zohdi,et al.  Numerical simulation of the impact and deposition of charged particulate droplets , 2013, J. Comput. Phys..

[60]  P. Wriggers,et al.  A DEM-FEM Coupling Approach for the Direct Numerical Simulation of 3D Particulate Flows , 2012 .

[61]  Eugenio Oñate,et al.  Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows , 2008 .

[62]  Christine Ho,et al.  Dispenser Printed Electrochemical Capacitors for Power Management of Millimeter Scale Lithium Ion Polymer Microbatteries for Wireless Sensors , 2006 .

[63]  H W Li,et al.  Dewetting of conducting polymer inkjet droplets on patterned surfaces , 2004, Nature materials.

[64]  Aleksandar Donev,et al.  Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Sawyer B. Fuller,et al.  Ink-jet printed nanoparticle microelectromechanical systems , 2002 .

[66]  Norman A. Fleck,et al.  On the cold compaction of powders , 1995 .

[67]  Peter Wriggers,et al.  Homogenization of granular material modeled by a three-dimensional discrete element method , 2008 .

[68]  Charbel Farhat,et al.  Partitioned procedures for the transient solution of coupled aeroelastic problems , 2001 .

[69]  T. H. Boyer,et al.  The force on a magnetic dipole , 1988 .

[70]  Peter Wriggers,et al.  A contact detection algorithm for superellipsoids based on the common-normal concept , 2008 .

[71]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[72]  F. Stillinger,et al.  Improving the Density of Jammed Disordered Packings Using Ellipsoids , 2004, Science.

[73]  Eugenio Oñate,et al.  High‐density sphere packing for discrete element method simulations , 2009 .

[74]  J. F. Stoddart,et al.  Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles , 2009, Nature.

[75]  Costas P. Grigoropoulos,et al.  ZnO nanowire network transistor fabrication on a polymer substrate by low-temperature, all-inorganic nanoparticle solution process , 2008 .

[76]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[77]  Peter M. Martin,et al.  Handbook of deposition technologies for films and coatings , 2010 .

[78]  Lallit Anand,et al.  Granular materials: constitutive equations and strain localization , 2000 .

[79]  Norman A. Fleck,et al.  The yield behaviour of metal powders , 1997 .

[80]  B. Schrefler,et al.  Coupling versus uncoupling in soil consolidation , 1991 .

[81]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[82]  S. Torquato Random Heterogeneous Materials , 2002 .

[83]  C. Farhat,et al.  Mixed explicit/implicit time integration of coupled aeroelastic problems: Three‐field formulation, geometric conservation and distributed solution , 1995 .

[84]  R. Feynman,et al.  The Feynman Lectures on Physics Addison-Wesley Reading , 1963 .

[85]  A. Pisano,et al.  An analysis of evaporative self-assembly of micro particles in printed picoliter suspension droplets , 2013 .

[86]  Stephen H. Davis,et al.  Theory of Solidification , 2001 .

[87]  T. Zohdi Dynamics of Charged Particulate Systems , 2012 .

[88]  T. Zohdi On the compaction of cohesive hyperelastic granules , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[89]  P. M. Martin,et al.  Introduction to Surface Engineering and Functionally Engineered Materials: Martin/Introduction , 2011 .

[90]  W. Steen Laser Material Processing , 1991 .

[91]  J. Michopoulos,et al.  Survey on Modeling and Simulation of Multiphysics Systems , 2005 .

[92]  Vivek Subramanian,et al.  Plastic-Compatible Low Resistance Printable Gold Nanoparticle Conductors for Flexible Electronics , 2003 .

[93]  T. Zohdi,et al.  Modelling and rapid simulation of multiple red blood cell light scattering , 2006, Journal of The Royal Society Interface.

[94]  A. Pisano,et al.  Coffee-ring effect-based three dimensional patterning of micro/nanoparticle assembly with a single droplet. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[95]  J. M. Haile,et al.  Molecular dynamics simulation : elementary methods / J.M. Haile , 1992 .

[96]  David W. Murray,et al.  Nonlinear Finite Element Analysis of Steel Frames , 1983 .

[97]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[98]  T. Belytschko,et al.  Computational Methods for Transient Analysis , 1985 .

[99]  A. Pisano,et al.  High resolution patterning of nanoparticles by evaporative self-assembly enabled by in situ creation and mechanical lift-off of a polymer template , 2011 .

[100]  Tae Joon Seok,et al.  Fast, high-throughput creation of size-tunable micro/nanoparticle clusters via evaporative self-assembly in picoliter-scale droplets of particle suspension. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[101]  Charbel Farhat,et al.  Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity , 2006 .

[102]  O. C. Zienkiewicz,et al.  Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems , 1988 .

[103]  Aleksandar Donev,et al.  Neighbor List Collision-Driven Molecular Dynamics Simulation for Nonspherical Particles. I. Algorithmic Details II. Applications to Ellipses and Ellipsoids , 2004 .

[104]  C. Graham,et al.  Introduction to Magnetic Materials , 1972 .

[105]  J. Barbera,et al.  Contact mechanics , 1999 .

[106]  Thorsten Pöschel,et al.  Computational Granular Dynamics , 2005 .

[107]  Tarek I. Zohdi Modeling and simulation of the optical response rod-functionalized reflective surfaces , 2012 .

[108]  T. Zohdi Electromagnetic Properties of Multiphase Dielectrics , 2012 .

[109]  William L. Hase,et al.  Molecular dynamics of clusters, surfaces, liquids, and interfaces , 1999 .

[110]  Russell Messier,et al.  Revised structure zone model for thin film physical structure , 1984 .

[111]  T. Zohdi On the Dynamics of Charged Electromagnetic Particulate Jets , 2010 .

[112]  T. Zohdi Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive FDTD , 2010 .

[113]  I. Park,et al.  Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. , 2007, Nano letters.

[114]  Salvatore Torquato,et al.  Diversity of order and densities in jammed hard-particle packings. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[115]  E. Hinton,et al.  Numerical Methods in Coupled Systems , 1989 .