The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration.

The 34,734-bp element ICESt1 from Streptococcus thermophilus CNRZ368 is site-specifically integrated into the 3(') end of the gene fda. ICESt1 encodes integrative functions and putative transfer functions. Six proteins of the putative conjugative system of ICESt1 are related to those encoded by the conjugative transposon Tn916 from Enterococcus faecalis. A comparison of these proteins with those encoded by the complete or partial genome sequences of various low G+C bacteria including Bacillus subtilis, Clostridium difficile, E. faecalis, Listeria monocytogenes, Staphylococcus aureus, and Streptococcus mutans revealed the presence of numerous putative site-specific integrative conjugative elements and/or conjugative transposons within these genomes. Sequence comparisons revealed that these elements possess a modular structure and that exchanges of unrelated or distantly related modules and genes have occurred between these elements, and also plasmids and prophages. These exchanges have probably led to modifications in the site specificity of integration of these elements. Therefore, a distinction between low specificity integrative conjugative elements (i.e., conjugative transposons) and site-specific integrative conjugative elements does not appear to be relevant. We propose to call all the conjugative elements that excise by site-specific recombination and integrate by recombination between a specific site of a circular intermediate and another site, "Integrative and Conjugative Elements" (ICEs), irrespective of the integration specificity.

[1]  D. Mills,et al.  Genetic analysis of regions of the Lactococcus lactis subsp. lactis plasmid pRS01 involved in conjugative transfer , 1994, Applied and environmental microbiology.

[2]  M. Caparon,et al.  Excision and insertion of the conjugative transposon Tn916 involves a novel recombination mechanism , 1989, Cell.

[3]  J R Roth,et al.  Selfish operons: horizontal transfer may drive the evolution of gene clusters. , 1996, Genetics.

[4]  M. Mergeay,et al.  Identification of a catabolic transposon, Tn4371, carrying biphenyl and 4-chlorobiphenyl degradation genes in Alcaligenes eutrophus A5 , 1993, Journal of bacteriology.

[5]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[6]  A. Salyers,et al.  Identification of genes required for excision of CTnDOT, a Bacteroides conjugative transposon , 2001, Molecular microbiology.

[7]  C. Fraser,et al.  Enterococcus faecalis conjugative plasmid pAM373: complete nucleotide sequence and genetic analyses of sex pheromone response , 2000, Molecular microbiology.

[8]  P. Mullany,et al.  Transfer of Tn916 and Tn916 delta E into Clostridium difficile: demonstration of a hot-spot for these elements in the C. difficile genome. , 1991, FEMS microbiology letters.

[9]  S. Ayalew,et al.  Nucleotide sequence analysis of the termini and chromosomal locus involved in site-specific integration of the streptococcal conjugative transposon Tn5252 , 1993, Journal of bacteriology.

[10]  C. Smith,et al.  Genetic elements of Bacteroides species: a moving story. , 1998, Plasmid.

[11]  M. Kanehisa,et al.  Whole genome sequencing of meticillin-resistant Staphylococcus aureus , 2001, The Lancet.

[12]  C W Hill,et al.  Mosaic structure of plasmids from natural populations of Escherichia coli. , 1996, Genetics.

[13]  A. Roberts,et al.  Characterization of the Ends and Target Sites of the Novel Conjugative Transposon Tn5397 from Clostridium difficile: Excision and Circularization Is Mediated by the Large Resolvase, TndX , 2000, Journal of bacteriology.

[14]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[15]  J. Pembroke,et al.  Transfer of the IncJ plasmid R391 to recombination deficient Escherichia coli K12: evidence that R391 behaves as a conjugal transposon. , 1995, FEMS microbiology letters.

[16]  J. Lengeler,et al.  CTnscr94, a conjugative transposon found in enterobacteria , 1997, Journal of bacteriology.

[17]  T. Komano Shufflons: multiple inversion systems and integrons. , 1999, Annual review of genetics.

[18]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[19]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[20]  F. Boccard,et al.  Identification of a gene encoding the replication initiator protein of the Streptomyces integrating element, pSAM2. , 1994, Plasmid.

[21]  R. Wirth,et al.  Sex pheromone plasmid pAD1-encoded surface exclusion protein ofEnterococcus faecalis , 1992, Molecular and General Genetics MGG.

[22]  J. Pernodet,et al.  Mode and origin of replication of pSAM2, a conjugative integrating element of Streptomyces ambofaciens , 1993, Molecular microbiology.

[23]  P. Mullany,et al.  DNA sequence of the insertional hot spot of Tn916 in the Clostridium difficile genome and discovery of a Tn916-like element in an environmental isolate integrated in the same hot spot. , 2000, FEMS microbiology letters.

[24]  B. Decaris,et al.  A species-specific DNA probe obtained from Streptococcus salivarius subsp. thermophilus detects strain restriction polymorphism. , 1991, FEMS microbiology letters.

[25]  M. Collins,et al.  DNA base composition, DNA-DNA homology and long-chain fatty acid studies on streptococcus thermophilus and Streptococcus salivarius. , 1984, Journal of general microbiology.

[26]  M. Waldor,et al.  Site‐specific integration of the conjugal Vibrio cholerae SXT element into prfC , 1999, Molecular microbiology.

[27]  D. Sherratt,et al.  Catalysis by site-specific recombinases. , 1992, Trends in genetics : TIG.

[28]  Neville Firth,et al.  Complete Nucleotide Sequence of pSK41: Evolution of Staphylococcal Conjugative Multiresistance Plasmids , 1998, Journal of bacteriology.

[29]  J. Rood,et al.  Molecular genetics of the chloramphenicol‐resistance transposon Tn4451 from Clostridium perfringens: the TnpX site‐specific recombinase excises a circular transposon molecule , 1995, Molecular microbiology.

[30]  P. Glaser,et al.  Characterization of transposon Tn1549, conferring VanB-type resistance in Enterococcus spp. , 2000, Microbiology.

[31]  Ariane Toussaint,et al.  Mobile elements as a combination of functional modules. , 2002, Plasmid.

[32]  C. Ronson,et al.  Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J Hacker,et al.  Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution , 1997, Molecular microbiology.

[34]  W. D. de Vos,et al.  Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis , 1992, Journal of bacteriology.

[35]  P. Ayoubi,et al.  Tn5253, the pneumococcal omega (cat tet) BM6001 element, is a composite structure of two conjugative transposons, Tn5251 and Tn5252 , 1991, Journal of bacteriology.

[36]  J. Celli,et al.  Circularization of Tn916 is required for expression of the transposon‐encoded transfer functions: characterization of long tetracycline‐inducible transcripts reading through the attachment site , 1998, Molecular microbiology.

[37]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[38]  V. Burrus,et al.  Characterization of a Novel Type II Restriction-Modification System, Sth368I, Encoded by the Integrative Element ICESt1 of Streptococcus thermophilusCNRZ368 , 2001, Applied and Environmental Microbiology.

[39]  S. Ehrlich,et al.  Analysis of six prophages in Lactococcus lactis IL1403: different genetic structure of temperate and virulent phage populations. , 2001, Nucleic acids research.

[40]  B. Decaris,et al.  Characterization and distribution of two insertion sequences, IS1191 and iso‐IS981, in Streptococcus thermophilus: does intergeneric transfer of insertion sequences occur in lactic acid bacteria co‐cultures? , 1995, Molecular microbiology.

[41]  C. Shearman,et al.  Characterization and exploitation of conjugation in Lactococcus lactis , 1995 .

[42]  A. Nishi,et al.  A 90-Kilobase Conjugative Chromosomal Element Coding for Biphenyl and Salicylate Catabolism in Pseudomonas putida KF715 , 2000, Journal of bacteriology.

[43]  M. N. Vijayakumar,et al.  An Operon That Confers UV Resistance by Evoking the SOS Mutagenic Response in Streptococcal Conjugative Transposon Tn5252 , 1999, Journal of bacteriology.

[44]  J. R. van der Meer,et al.  Low-Frequency Horizontal Transfer of an Element Containing the Chlorocatechol Degradation Genes fromPseudomonas sp. Strain B13 to Pseudomonas putidaF1 and to Indigenous Bacteria in Laboratory-Scale Activated-Sludge Microcosms , 1998, Applied and Environmental Microbiology.

[45]  M. Waldor,et al.  A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139 , 1996, Journal of bacteriology.

[46]  M. Pallen,et al.  A group II intron in a conjugative transposon from the gram-positive bacterium, Clostridium difficile. , 1996, Gene.

[47]  J. Pernodet,et al.  Plasmids in different strains of Streptomyces ambofaciens: free and integrated form of plasmid pSAM2 , 2004, Molecular and General Genetics MGG.

[48]  Y. Su,et al.  Nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis. , 1994, Plasmid.

[49]  M. Mulvey,et al.  Complete Nucleotide Sequence of a 43-Kilobase Genomic Island Associated with the Multidrug Resistance Region of Salmonella enterica Serovar Typhimurium DT104 and Its Identification in Phage Type DT120 and Serovar Agona , 2001, Journal of bacteriology.

[50]  B. Decaris,et al.  High-frequency deletion involving closely spaced rRNA gene sets in Streptococcus thermophilus , 1992 .

[51]  M. Richardson,et al.  Site-specific integration in Streptomyces ambofaciens: localization of integration functions in S. ambofaciens plasmid pSAM2 , 1989, Journal of bacteriology.

[52]  B. Dougherty,et al.  Sequence and analysis of the 60 kb conjugative, bacteriocin‐producing plasmid pMRC01 from Lactococcus lactis DPC3147 , 1998, Molecular microbiology.

[53]  A. Roberts,et al.  Comparison of Tn5397 from Clostridium difficile, Tn916 from Enterococcus faecalis and the CW459tet(M) element from Clostridium perfringens shows that they have similar conjugation regions but different insertion and excision modules. , 2001, Microbiology.

[54]  V. Burrus,et al.  Characterization of a Novel Integrative Element, ICESt1, in the Lactic Acid BacteriumStreptococcus thermophilus , 2000, Applied and Environmental Microbiology.

[55]  R. Hendrix,et al.  Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[56]  A. Salyers,et al.  NBU1, a mobilizable site-specific integrated element from Bacteroides spp., can integrate nonspecifically in Escherichia coli , 1996, Journal of bacteriology.

[57]  H. Brüssow,et al.  Comparative Genomics of Streptococcus thermophilus Phage Species Supports a Modular Evolution Theory , 1999, Journal of Virology.

[58]  D. Clewell,et al.  Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. , 1995, Trends in microbiology.

[59]  P. Dürre,et al.  Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria , 1991, Journal of bacteriology.

[60]  L. Katz,et al.  Site-specific integration in Saccharopolyspora erythraea and multisite integration in Streptomyces lividans of actinomycete plasmid pSE101 , 1988, Journal of bacteriology.

[61]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[62]  R. Wirth,et al.  Sequence analysis of Enterococcus faecalis aggregation substance encoded by the sex pheromone plasmid pAD1 , 1990, Molecular microbiology.

[63]  S. Backert,et al.  Potential role of two Helicobacter pylori relaxases in DNA transfer? , 1998, Molecular microbiology.