The Satisfiability Problem for Probabilistic CTL
暂无分享,去创建一个
Jan Kretínský | Tomás Brázdil | Antonín Kucera | Vojtech Forejt | Jan Křetínský | A. Kucera | T. Brázdil | Vojtěch Forejt
[1] Bengt Jonsson,et al. A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.
[2] Orna Kupferman,et al. An automata-theoretic approach to modular model checking , 2000, TOPL.
[3] Christel Baier,et al. Controller Synthesis for Probabilistic Systems , 2004, IFIP TCS.
[4] J. Esparza,et al. Model checking probabilistic pushdown automata , 2004, LICS 2004.
[5] Michael Huth,et al. Quantitative analysis and model checking , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.
[6] Thomas A. Henzinger,et al. On the Universal and Existential Fragments of the µ-Calculus , 2003, TACAS.
[7] Antonín Kucera,et al. On the Controller Synthesis for Finite-State Markov Decision Processes , 2005, Fundam. Informaticae.
[8] Richard E. Ladner,et al. Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..
[9] Larry J. Stockmeyer,et al. Improved upper and lower bounds for modal logics of programs , 1985, STOC '85.
[10] Tomás Brázdil,et al. Stochastic games with branching-time winning objectives , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).
[11] Kousha Etessami,et al. Recursive Markov Chains, Stochastic Grammars, and Monotone Systems of Nonlinear Equations , 2005, STACS.
[12] Tomás Brázdil,et al. Controller Synthesis and Verification for Markov Decision Processes with Qualitative Branching Time Objectives , 2008, ICALP.
[13] E. Allen Emerson,et al. Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[14] Joseph Y. Halpern,et al. Decision procedures and expressiveness in the temporal logic of branching time , 1982, STOC '82.
[15] Tomás Brázdil,et al. On the Decidability of Temporal Properties of Probabilistic Pushdown Automata , 2005, STACS.
[16] Howard Barringer,et al. Temporal Logic with Fixed Points , 1987, Temporal Logic in Specification.
[17] Jan Johannsen,et al. CTL+ Is Complete for Double Exponential Time , 2003, ICALP.
[18] Dexter Kozen,et al. A finite model theorem for the propositional μ-calculus , 1988, Stud Logica.
[19] Mihalis Yannakakis,et al. The complexity of probabilistic verification , 1995, JACM.
[20] E. Allen Emerson,et al. The Complexity of Tree Automata and Logics of Programs , 1999, SIAM J. Comput..